Evaluating Resistance to False-Name Manipulations in Elections

Bo Waggoner Lirong Xia Vincent Conitzer

Thanks to Hossein Azari and Giorgos Zervas for helpful discussions!
Outline

• Background and motivation: Why study elections in which we expect false-name votes?

• Our model

• How to select a false-name-limiting method?

• How to evaluate the election outcome?

• Recap and future work
Motivating Challenge:
Poll customers about a potential product
Preventing strategic behavior

Deter or hinder misreporting

• Restricted settings (e.g., single-peaked preferences)

• Use computational complexity
False-name manipulation

• False-name-proof voting mechanisms?
• **Extremely** negative result for voting [C., WINE’08]
• Restricting to single-peaked preferences does not help much [Todo, Iwasaki, Yokoo, AAMAS’11]
• Assume creating additional identifiers comes at a cost [Wagman & C., AAAI’08]
• Verify some of the identities [C., TARK’07]
• Use social network structure [C., Immorlica, Letchford, Munagala, Wagman, WINE’10]

Overview article [C., Yokoo, AIMag 2010]

Common factor: false-name-proof
Let’s at least put up some obstacles

Issues:
1. Some still vote multiple times
2. Some don’t vote at all
Approach

Suppose we can experimentally determine how many identities voters tend to use for each method.

140.247.232.88 jmhzdszx@sharklasers.com
Outline

• Background and motivation: Why study elections in which we expect false-name votes?

• Our model

• How to **select** a false-name-limiting method?
• How to **evaluate** the election outcome?

• Recap and future work
Model

- For each false-name-limiting method, take the individual vote distribution π as given.
- Suppose votes are drawn i.i.d.
Model

• Single-peaked preferences (here: two alternatives)
Outline

• Background and motivation: Why study elections in which we expect false-name votes?

• Our model

• How to select a false-name-limiting method?

• How to evaluate the election outcome?

• Recap and future work
Example

- Is the choice always obvious?
- Individual vote distribution for 2010 U.S. midterm Congressional elections:

Actual (in-person)

<table>
<thead>
<tr>
<th>Votes cast</th>
<th>percent of eligible voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

Hypothetical (online)

<table>
<thead>
<tr>
<th>Votes cast</th>
<th>percent of eligible voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

March 2012
Problem statement

\[n_A > n_B \]

\[\Pr[\text{correct} \mid \pi_1] > \Pr[\text{correct} \mid \pi_2] \]

\[(\Pr[\text{correct}] = \Pr[V_A > V_B]) \]
Our results

• We show: which of π_1 and π_2 is preferable as elections grow large

• Setting: sequence of growing supporter profiles (n_A, n_B) where:

 1. $n_A - n_B \in O(\sqrt{n})$ (elections are “close”)
 2. $n_A - n_B \in \omega(1)$ (but not “dead even”)

March 2012
Selecting a false-name-limiting method

Theorem 1.

Suppose \(\frac{\mu_1}{\sigma_1} > \frac{\mu_2}{\sigma_2} \). Then eventually

\[
\Pr[\text{correct } | \pi_1] > \Pr[\text{correct } | \pi_2].
\]

“For large enough elections, the ratio of mean to standard deviation is all that matters.”
Selecting a false-name-limiting method

Intuition.
• Distributions approach Gaussians

\[
\text{Pr[correct]} = \text{Pr}[V_A > V_B] = \text{Pr}[V_A - V_B > 0] \approaches \Phi \left(\frac{\mu}{\sigma} \frac{n_A - n_B}{\sqrt{n}} \right).
\]
Question 1 Recap

$voters$

$n_A > n_B$

• Takeaway: choose highest ratio!
• Inspiration for new methods?
Outline

• Background and motivation: Why study elections in which we expect false-name votes?

• Our model

• How to select a false-name-limiting method?

• How to evaluate the election outcome?

• Recap and future work
Analyzing election results

- Observe votes $\hat{v}_A > \hat{v}_B$
- One approach: Bayesian

 Requires a prior, which may be
 - costly/impossible to obtain
 - biased or open to manipulation

- Our approach: statistical hypothesis testing
Statistical hypothesis testing

Conclusion

\[n_A > n_B \]

Null hypothesis

\[n_A = n_B \]

Observed

\[\hat{\nu}_A > \hat{\nu}_B \]

"test statistic"

\[\hat{\beta} \]

Pr[\beta \geq \hat{\beta}]

"p-value"
Statistical hypothesis testing

Conclusion

\[n_A > n_B \]

Null hypothesis

\[n_A = n_B \]

Observed

\[\hat{\beta} \]

p-value

\[\Pr[\beta > \hat{\beta}] \]

Observed is not unlikely under null hypothesis

\[\text{p-value} > .05 \]

Observed is unlikely under null hypothesis

\[\text{p-value} < .05 \]
Null hypothesis: \(n_A = n_B = 1, 2, 3, 4, \ldots \)

We can compute a p-value for each one.

- **Reject** (\(\text{max-p} < R \))
- **Accept** (\(\text{min-p} > R \))
- **Unclear**
Our statistical test

Procedure:

1. Select significance level R (e.g. 0.05).
2. Observe votes $\hat{v}_A > \hat{v}_B$.
3. Compute $\hat{\beta}$.
4. If $\max_{n_A=n_B} p$-value $< R$, reject.
5. If $\min_{n_A=n_B} p$-value $> R$, don’t reject.
6. Else, inconclusive whether to reject or not.
Example and picking a test statistic

<table>
<thead>
<tr>
<th>Supporters</th>
<th>(\pi_M)</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_A (?))</td>
<td>False-name-limiting method M</td>
<td>92 = (\hat{\nu}_A)</td>
</tr>
<tr>
<td>(n_B (?))</td>
<td></td>
<td>80 = (\hat{\nu}_B)</td>
</tr>
</tbody>
</table>

\[\beta(\hat{\nu}_A, \hat{\nu}_B) = ? \]
Selecting a test statistic

Observed: \(\hat{v}_A = 92, \hat{v}_B = 80. \)

Difference rule: \(\hat{\beta} = \hat{v}_A - \hat{v}_B = 12 \)

Percent rule: \(\hat{\beta} = \frac{\hat{v}_A - \hat{v}_B}{\hat{v}} \approx 0.07 \)

General form: \(\hat{\beta} = \frac{\hat{v}_A - \hat{v}_B}{\hat{v}_\alpha} = \frac{12}{172\alpha} \)

(Adjusted margin of victory)
Test statistics that fail

Theorem 2.

Let the *adjusted margin of victory* be

\[\beta = \frac{\hat{v}_A - \hat{v}_B}{\hat{\nu}_\alpha}. \]

Then

1. For any \(\alpha < 0.5 \), \(\max-p = \frac{1}{2} \): we can never be sure to reject. (*Type 2 errors*)
2. For any \(\alpha > 0.5 \), \(\min-p = 0 \): we can never be sure to “accept”. (*Type 1 errors*)
Test statistics for an election

\[\text{p-value} \]

\[\text{number of voters} \]

\[\alpha = 0.2 \]
\[\alpha = 0.5 \]
\[\alpha = 0.8 \]
The “right” test statistic

Theorem 3.
Let the adjusted margin of victory formula be
\[\beta = \frac{\hat{v}_A - \hat{v}_B}{\hat{v}_{0.5}}. \]
Then

1. For a large enough \(\hat{\beta} \), we will reject.
 (Declare the outcome “correct”.)
2. For a small enough \(\hat{\beta} \), we will not reject.
 (Declare the outcome “inconclusive”.)
Test statistics for an election

p-value vs. number of voters for different values of α: $\alpha = 0.2$, $\alpha = 0.5$, $\alpha = 0.8$. The green dashed lines indicate the critical p-values for significance at these levels.
We can usually tell whether to reject or not
Use this test!

1. Select significance level R (e.g. 0.05).
2. Observe votes $\hat{V}_A > \hat{V}_B$.
3. Compute $\hat{β} = \frac{\hat{V}_A - \hat{V}_B}{\hat{V}^{0.5}}$.
4. If $\max \ p$-value $< R$, reject: high confidence.
5. If $\min \ p$-value $> R$, don’t: low confidence.
6. Else, inconclusive whether to reject or not.
 (rare!)
Outline

• Background and motivation: Why study elections in which we expect false-name votes?

• Our model

• How to select a false-name-limiting method?

• How to evaluate the election outcome?

• Recap and future work
Summary

• Model: take \(\pi \) as given, draw votes i.i.d.

• How to **select** a false-name-limiting method?

 A: Pick the method with the highest \(\frac{\mu}{\sigma} \).

• How to **evaluate** the election outcome?

 A: Statistical significance test with

 \[
 \hat{\beta} = \frac{\hat{v}_A - \hat{v}_B}{\nu^{0.5}}
 \]

 using max p-value and min p-value.
Future Work

• Single-peaked preferences (done)
• Application to real-world problems
• Other models or weaker assumptions
• How to actually produce distributions π?
 – Experimentally
 – Model agents and utilities

Thanks!