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Coming soon to a society near you

data-holders

ex: medical data

data-needers

ex: pharmaceutical co.
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Classic ML problem

z1 z2

learning alg
data source

h

hypothesis

data data-needer

Goal: use small amount of data, output “good” h.
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Example learning task: classification

● Data: (point, label) where label is      or

● Hypothesis: hyperplane separating the two types

h

h
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Twist: data is now held by individuals

c1

z1 z2
mechanism

data source

c2 h

hypothesis

“Cost of revealing data”  (formal model later…)
Goal: spend small budget, output “good” h.

data-neederdata-holders
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Why is this difficult?

1. (Relatively) few data are useful

Studying ACTN-3 
mutation and 
endurance running

have 
mutation runners
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Why is this difficult?

2. Utility of data may be correlated with cost (causing bias)

Paying $10 for data
(to study HIV)

HIV-negative

yes
yes

no
yes

yes

HIV-positive

no
no

yes
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Why is this difficult?

2. Utility of data may be correlated with cost (causing bias)

Paying $10 for data
(to study HIV)

HIV-negative

yes
yes

no
yes

yes

HIV-positive

no
no

yes

Machine Learning roadblock:
how to deal with biases?
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Why is this difficult?

3. Utility (ML) and cost (econ) live in different worlds

learning alg

entropies, gradients, loss 
functions, divergences mechanism

auctions, budgets, value 
distributions, reserve prices
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Why is this difficult?

3. Utility (ML) and cost (econ) live in different worlds

learning alg

entropies, gradients, loss 
functions, divergences mechanism

auctions, budgets, value 
distributions, reserve prices

Econ roadblock:
how to assign value to data?
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Broad research challenge:

1. How to assign value (prices) to pieces of data?

2. How to design mechanisms for procuring and 
learning from data?

3. Develop a theory of budget-constrained learning:
what is (im)possible to learn given budget B and 
parameters of the problem?
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Outline

1. Overview of literature,
our contributions

2. Online learning model/results

3. “Statistical learning” result,
conclusion
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Related work

Cummings, Ligett, Roth, Wu, Ziani 2015

Horel, Ionnadis, Muthukrishnan 2014

Roth, Schoenebeck 2012

Ligett, Roth 2012

Cai, Daskalakis, Papadimitriou 2015

principal-agent 
style, data 
depends on effort

agents cannot 
fabricate data,
have costs

this work

How are agents 
strategic?
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Cummings, Ligett, Roth, Wu, Ziani 2015

Horel, Ionnadis, Muthukrishnan 2014

Roth, Schoenebeck 2012

Ligett, Roth 2012

Cai, Daskalakis, Papadimitriou 2015

principal-agent 
style, data 
depends on effort

agents cannot 
fabricate data,
have costs

this work

minimize variance
or related goal

risk/regret 
boundsType of goal
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Related work

Cummings, Ligett, Roth, Wu, Ziani 2015

Horel, Ionnadis, Muthukrishnan 2014

Roth, Schoenebeck 2012

Ligett, Roth 2012

Cai, Daskalakis, Papadimitriou 2015

principal-agent 
style, data 
depends on effort

agents cannot 
fabricate data,
have costs

this work

minimize variance
or related goal

risk/regret 
bounds

Waggoner, Frongillo, Abernethy NIPS 2015:
prediction-market style mechanism



Conducting Truthful Surveys, Cheaply

● Each datapoint is a number. Task is to estimate the mean
● Approach: offer each agent a price drawn i.i.d.
● Goal: minimize the estimate’s variance
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e.g. Roth-Schoenebeck, EC 2012

c1

0 1

data
source

c2 h

i.i.d.
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What we wanted to do differently

1. Prove ML-style risk or regret bounds
Why: ML-style approach: understand error rate as 
function of budget and problem characteristics.

2. Interface with existing ML algorithms.
Why: understand how value derives from learning alg. 
Toward black-box use of learners in mechanisms.

3. Online data arrival
Why: active-learning approach, simpler model
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Overview of our contributions

Propose model of online learning with purchased 
data: T arriving data points and budget B.

Convert any “FTRL” algorithm into a mechanism.

Show regret on order of T / √B
and lower bounds of same order.



Extend model to case where data is drawn i.i.d.
(“statistical learning”)

Extend result to “risk” bound on order of  1 / √B .
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Overview of our contributions

Propose model of online learning with purchased 
data: T arriving data points and budget B.

Convert any “FTRL” algorithm into a mechanism.

Show regret on order of T / √B
and lower bounds of same order.
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Outline

1. Overview of literature,
our contributions

2. Online learning model/results

3. “Statistical learning” result,
conclusion
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Online learning
with purchased data

a. Review of online learning

b. Our model: adding $$

c. Deriving our mechanism
and results
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Standard online learning model

For t = 1, …, T:

● algorithm posts a hypothesis ht

● data point zt arrives

● algorithm sees zt and updates to ht+1

Loss     =  ∑t ℓ(ht, zt)

Regret  =  Loss  -  ∑t ℓ(h*, zt) where h* minimizes sum
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Follow-the-Regularized-Leader (FTRL)

Assume: loss function is convex and Lipschitz, hypothesis space is Hilbert, etc

Algorithm:  ht = argmin ∑s<t ℓ(h, zs)  + R(h)/η
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Follow-the-Regularized-Leader (FTRL)

Assume: loss function is convex and Lipschitz, hypothesis space is Hilbert, etc

Algorithm:  ht = argmin ∑s<t ℓ(h, zs)  + R(h)/η

Example 1 (Euclidean norm): R(h) = ǁhǁ2
2

⇒ ht = ht-1 - η∇ℓ(h, zt)
online gradient descent
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Follow-the-Regularized-Leader (FTRL)

Assume: loss function is convex and Lipschitz, hypothesis space is Hilbert, etc

Algorithm:  ht = argmin ∑s<t ℓ(h, zs)  + R(h)/η

Example 1 (Euclidean norm): R(h) = ǁhǁ2
2

⇒ ht = ht-1 - η∇ℓ(h, zt)
online gradient descent

Example 2 (negative entropy):  R(h) = ∑j h
(j) ln(h(j)).

⇒ ht
(j) ∝ ht-1

(j) exp[ η∇ℓ(ht-1, zt
 ) ]

multiplicative weights
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Regret Bound for FTRL

Fact: the regret of FTRL is bounded by O of 
1/η  + η ∑t Δt

2     where Δt = ǁ ∇ℓ(ht, zt) ǁ.
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Regret Bound for FTRL

Fact: the regret of FTRL is bounded by O of 
1/η  + η ∑t Δt

2     where Δt = ǁ ∇ℓ(ht, zt) ǁ.

We know Δt ≤ 1 by assumption, so we can choose η=1/√T 
and get Regret  ≤ O(√T ).

“No regret”: average regret → 0.
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Online learning
with purchased data

a. Review of online learning

b. Our model: adding $$

c. Deriving our mechanism
and results
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First: model of strategic data-holder

Model of agent:
● holds data zt and cost ct

● cost is threshold price
○ agent agrees to sell data iff price ≥ ct

○ interpretations: privacy, transaction cost, ….

● Assume: all costs ≤ 1

ct zt
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Model of agent-mechanism interaction

● Mechanism posts menu of prices offered:

● agent t arrives

● If ct ≤ price(zt),  agent accepts:
○ agent reveals (zt, ct)
○ mechanism pays agent price(zt)

● Otherwise, agent rejects:
○ mechanism learns that agent rejected, pays nothing

data: (32,12) (20,18) (32,12)

price:    $0.22    $0.41    $0.88

ct zt
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Recall: standard online learning model

For t = 1, …, T:

● algorithm posts a hypothesis ht

● data point zt arrives

● algorithm sees zt and updates to ht+1
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Our model: online learning with $$

For t = 1, …, T:

● mechanism posts a hypothesis ht
and a menu of prices

● data point zt arrives with cost ct

● If ct ≤ menu price of zt:  mech pays price, learns zt

● else: mech pays nothing

Loss     =  ∑t ℓ(ht, zt)
Regret  =  Loss  -  ∑t ℓ(h*, zt) where h* minimizes sum

ct zt
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Online learning
with purchased data

a. Review of online learning

b. Our model: adding $$

c. Deriving our mechanism
and results
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Start easy

Suppose all costs are 1.
⇒ Determine which data points to sample.

ct zt

data: (32,12) (20,18) (32,12)

price:    $1    $0    $0
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Start easy

Suppose all costs are 1.
⇒ Determine which data points to sample.

Examples:
● B = T/2

● B = √T

● B = log(T)

ct zt

data: (32,12) (20,18) (32,12)

price:    $1    $0    $0
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Key idea #1: randomly sample

Can purchase each data point zt with probability qt(zt).

Menu is now randomly chosen:
data:          (32,12)   (20,18)   (32,12)

Pr[price=1]:       0.3 0.06 0.41

1/η  + E [ η ∑t (Δt
2 / qt) ]



37

Key idea #1: randomly sample

Can purchase each data point zt with probability qt(zt).

Menu is now randomly chosen:
data:          (32,12)   (20,18)   (32,12)

Pr[price=1]:       0.3 0.06 0.41

Lemma (importance-weighted regret bound):
For any qts, the regret of (modified) FTRL is O of

1/η  + η E [ ∑t (Δt
2 / qt) ]

See also: Importance-Weighted Active Learning, Beygelzimer et al, ICML 2009.
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Result for easy case

Lemma (importance-weighted regret bound):
For any qts, the regret of (modified) FTRL is O of

Corollary:
Setting all qt = B/T and choosing η =√B / T  yields

regret ≤ T / √B .

1/η  + η E [ ∑t (Δt
2 / qt) ]

“No data, no regret”:
average amount of data → 0 and average regret → 0.
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Result for easy case

Lemma (importance-weighted regret bound):
For any qts, the regret of (modified) FTRL is O of

Corollary:
Setting all qt = B/T and choosing η =√B / T  yields

regret ≤ T / √B .

Theorem:
This is tight.

(Predict a repeated coin toss whose bias is either 1+1/√B or 1-1/√B )

1/η  + η E [ ∑t (Δt
2 / qt) ]
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Now a bit harder….

Costs can be arbitrary, but agents are nonstrategic:
they will accept payment exactly ct.

At each time step, randomly choose which
(data, cost) pairs to purchase.

Question: how to set probabilities of purchase qt?

data,cost:   (32,12)      , c=0.3       (20,18)    , c=0.8

Pr[purchase]:           0.12      0.08
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Key idea #2: sample proportional to...

Imagine we knew the arrivals in advance.
Optimization problem:

minimize    ∑t (Δt
2 / qt)

s.t.              ∑t qt ct        ≤  B
                                qt                ≤  1.

Solution:   qt = Δt
  / K √ct     (K a normalizing constant).

ct zt
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Key idea #2: sample proportional to...

Imagine we knew the arrivals in advance.
Optimization problem:

minimize    ∑t (Δt
2 / qt)

s.t.              ∑t qt ct        ≤  B
                                qt                ≤  1.

Solution:   qt = Δt
  / K √ct     (K a normalizing constant).

The point: only need advance knowledge of K to 
implement the “optimal” sampling strategy!

Turns out: K = ᶕ T / B, where ᶕ ∈ [0,1]  (discuss later)

ct zt
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Result for this “at-cost” setting

Theorem:
Given rough advance estimate of ᶕ, can achieve

regret ≤  ᶕ T / √B 

Theorem:
This is tight (in a reasonable sense).

(Same bad instance, but with “useless” free data points sprinkled in.)

Implication: ᶕ is capturing the “difficulty of the problem”.



ᶕ = (1/T)  ∑t Δt √ct
   = average  sqrt(difficulty * cost).

44

Discussion



ᶕ = (1/T)  ∑t Δt √ct
   = average  sqrt(difficulty * cost).

● Low avg cost ⇒ low regret
● Low avg difficulty ⇒ low regret
● good correlations ⇒ low regret
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Discussion

Example simplified corollary:
Given rough advance estimate of avg cost μ,

regret ≤  √μ T / √B 
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Finally, the “full” problem.

ct zt

Now agents are strategic
and we must post prices.

Recall: had sampling probability qt = Δt
  / K √ct .

But: we don’t know ct.
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Finally, the “full” problem.

ct zt

Now agents are strategic
and we must post prices.

Recall: had sampling probability qt = Δt
  / K √ct .

But: we don’t know ct.

Key idea #3: randomly draw price from the distribution s.t. 
Pr[ price ≥ ct] = Δt

  / K √ct .

⇒ achieve the “right” probability for every ct simultaneously!
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Description of final mechanism

Input: estimate of ᶕ

At each time t:

● post hypothesis ht ← FTRL

● for each data point zt, compute Δt = ǁ ∇ℓ(ht, zt) ǁ
and post random price from distribution

● If arriving agent accepts,
send “re-weighted” zt → FTRL
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Main result for online learning setting

Theorem:
Given rough advance estimate of ᶕ, can achieve

Theorem (recall):
No mechanism for the easier, “at-cost” setting can beat

regret ≤ ᶕ T / √B 

regret ≤  √ᶕ T / √B 

Note: lost a √ᶕ factor compared to easier setting,
due to paying our posted price rather than the agent’s cost.
(“cost of strategic behavior”)
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Outline

1. Overview of literature,
our contributions

2. Online learning model/results

3. “Statistical learning” result,
conclusion



Extend model to case where data is drawn i.i.d.
(“statistical learning”)

Extend result to “risk” bound on order of  1 / √B .
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Recalling contributions

Propose model of online learning with purchased 
data: T arriving data points and budget B.

Convert any “FTRL” algorithm into a mechanism.

Show regret on order of T / √B
and lower bounds of same order.
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Classic statistical learning model

For classification:

E loss( h )  ≤  E loss( h* )   +   O VC-dim

T

z1 z2

learning alg
data source

h

hypothesisi.i.d.
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Our statistical learning model

c1

z1 z2
mechanism

data source

c2 h

hypothesis

i.i.d.

ᶕ

B

costs (still) may be adversarially chosen
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Our statistical learning model

c1

z1 z2
mechanism

data source

c2 h

hypothesis

i.i.d.

Theorem:
Given rough advance estimate of ᶕ, can achieve

E loss( h )  ≤  E loss( h* )   +   O
ᶕ

B
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Our statistical learning model

c1

z1 z2
mechanism

data source

c2 h

hypothesis

i.i.d.

Theorem:
Given rough advance estimate of ᶕ, can achieve

E loss( h )  ≤  E loss( h* )   +   O
ᶕ

B

Proof: known “online-to-batch 
conversion”: regret R ⇒ risk R/T
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Summary

Model:
● online arrival of agents
● post prices to procure data
● adversarial costs and data

(online learning setting)
● adversarial costs, i.i.d. data

(statistical learning setting)
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Summary

Results:
● upper/lower bounds on regret

(online learning setting)
● upper bound on risk

(statistical learning setting)
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Summary

Big picture:
● design mechanisms to interface with existing 

learning algs
● prove ML-style bounds: risk and regret
● toward a “theory of the learnable...on a budget”
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Future work

● Improve bounds (!)

● Propose “universal quantity” to replace
γ in bounds (analogue of VC-dimension?)

● Explore models for purchasing data
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Future work

● Improve bounds (!)

● Propose “universal quantity” to replace
γ in bounds (analogue of VC-dimension?)

● Explore models for purchasing data

Thanks!



Additional slides
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Simulation results

MNIST dataset -- handwritten digit classification

Brighter green = 
higher cost

Toy problem: 
classify (1 or 4) 
vs (9 or 8)
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Simulation results

● T = 8503
● train on half,

test on half
● Alg: Online Gradient 

Descent

Naive: pay 1 until budget
is exhausted, then run alg

Baseline: run alg on all
data points (no budget)

Large γ: bad correlations
Small γ: independent cost/data
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Pricing distribution


