An Axiomatic Study of Scoring Rule Markets

Rafael Frongillo
CU Boulder

Bo Waggoner
UPenn

January 2018
Prediction markets

Prediction market: mechanism wherein agents buy/sell “contracts” . . . thereby revealing “predictions” about a future event.

Contract: function $f : \text{outcomes} \rightarrow \text{money}$.

Question: How to choose available contracts/prices at each time?
Example

Predict: total number of Trump Tweets in 2018

Contract: pay off 1 cent for every tweet

Cost function: convex $C':$ total contracts sold \rightarrow total cost paid.

If θ contracts have been sold so far, payment is $C(\theta + 100) - C(\theta)$.

Current price: 2.56

I’ll buy 100
Prior work and this paper

Previously studied: cost function markets
- The price converges to *expected value* of the contract
- They are great\(^1\)

Previously proposed generalization: *scoring rule markets*\(^2\) (SRMs)
- Can make *other kinds of predictions*
- But are they great?

This paper:
- Propose *axioms* to address this question,
- apply to e.g. mode, median markets,
- characterize satisfaction of all axioms.

\(^1\)[Abernethy, Chen, Wortman Vaughan 2013]
\(^2\)[Lambert, Pennock, Shoham 2008]
Outline

1 Define scoring rule markets
2 Axioms and key examples
3 Characterization and new market
4 End talk
Background: Properties of distributions

Property or statistic of a probability distribution: \(\Gamma : \Delta_Y \rightarrow \mathcal{R} \).

- mean
- mode
- median

Scoring rule: function \(S : \mathcal{R} \times Y \rightarrow \mathbb{R} \).

- \(S(r, y) = -(r - y)^2 \) elicits mean
- \(S(r, y) = 1_{r=y} \) elicits mode
- \(S(r, y) = -|r - y| \) elicits median
Why focus on SRMs?

Axiom (Incentive Compatibility for a property)

- market histories \rightarrow prediction r
- max utility \iff accurate prediction

Axiom (Path independence)

No gain from making a sequence of trades versus just one.

- Market states
 - Many consecutive trades
 - Single trade
Why focus on SRMs?

Theorem

Incentive Compatibility and Path Independence \Rightarrow SRM.

Definition (SRM3)

In a scoring rule market (SRM), the net payoff for moving the prediction from r' to r is

$$S(r, y) - S(r', y).$$

3[Hanson 2003; Lambert, Pennock, Shoham 2008]
Robustness for free

Arbitrage: purchase of a contract that is profitable in expectation for every belief.

Theorem

All SRMs satisfy no arbitrage: there is never an arbitrage opportunity.
1 Define scoring rule markets
2 Axioms and key examples
3 Characterization and new market
4 End talk
Example: Mode

Consider the SRM defined by $S(r, y) = \alpha \mathbb{1}_{r=y}$.

If α is small:

If α is large:
First new axiom

Liability from purchasing contract(s): maximum possible net loss.

Axiom (Bounded Trader Budget‘)

Agents can usefully participate while maintaining arbitrarily small liability.

Theorem

No *SRM for any “finite property” can satisfy BTB.*
Example: Median

Consider the SRM defined by \(S(r, y) = -|r - y| \).

Theorem

If beliefs contain no point masses, every SRM for every quantile property satisfies Bounded Trader Budget.
Motivating the main axiom

What can you do in a **market**? Both **buy** and **sell**.

- Current price: $2.56
- **I'll sell 30**

But e.g. in the median market, agents sometimes...

- ... cannot decrease **risk** by “selling back” contracts
- ... cannot even decrease **liability**!
Main axioms

Axiom (Weak Neutralization)

For any agent with liability d, there always exists a trade yielding net liability strictly less than d.

\Rightarrow can always reduce liability.

Axiom (Trade Neutralization)

For any agent with liability d, there always exists a trade yielding constant net liability strictly less than d.

\Rightarrow can always reduce liability and eliminate risk.
Example: Median, revisited

Consider the SRM defined by $S(r, y) = -|r - y|$.

Theorem

No SRM for any quantile satisfies Weak Neutralization (nor Trade Neutralization, therefore).
Example: Mean

Theorem (known/direct)

For any expectation of a bounded random variable, there exist SRMs satisfying all axioms.
(In particular, a cost function based market.)
Outline

1. Define scoring rule markets
2. Axioms and key examples
3. Characterization and new market
4. End talk
Theorem (Main)

Any SRM satisfying Trade Neutralization can be written as a cost-function based market.

Proof idea: (1) Lemma showing that contracts mod price form a subgroup of \mathbb{R}^k; (2) show pricing is given by single cost function. *(Hidden: bunch of convex analysis.)*

Corollary (Main)

*Any market satisfying all our axioms is cost-function based, hence (essentially) *elicits an expectation.*
What about WN? New market idea

Predict: ratio of expectations $\frac{\mathbb{E}X}{\mathbb{E}Y}$, e.g. $\frac{\mathbb{E} \text{ Trump Tweets}}{\mathbb{E} \text{ Bieber Tweets}}$.

Market: use cost function market for Trump Tweets

But: you *pay* in units of “Bieber contracts”

Current price: 0.07

I’ll buy 100

Satisfies WN, but not TN!
Takeaways

- Scoring rule markets for properties like medians, modes, ...
- Proposed axioms for “good” (great?) markets
- Only property to satisfy all axioms: expectations
- Investigation leads to new market design ideas
- Other axioms?
- Innovative prediction mechanism ideas?

Thanks!