Prophet Inequalities with Linear Correlations

Nicole Immorlica
Microsoft Research
Oct. 2019
Sahil Singla
Princeton
Bo Waggoner U. Colorado

Outline:

1 Prophet inequalities - overview
2 This work: introducing correlations

A stopping time problem

Given: independent X_{1}, \ldots, X_{n}, known distributions

A stopping time problem

Given: independent X_{1}, \ldots, X_{n}, known distributions
Realizations are revealed one by one ...
....algorithm can stop at any time i and take X_{i}

A stopping time problem

Given: independent X_{1}, \ldots, X_{n}, known distributions
Realizations are revealed one by one ...
....algorithm can stop at any time i and take X_{i}

OPT $:=\max _{i} X_{i}$
achieved by the prophet

A stopping time problem

Given: independent X_{1}, \ldots, X_{n}, known distributions
Realizations are revealed one by one ...
....algorithm can stop at any time i and take X_{i}

OPT $:=\max _{i} X_{i}$
achieved by the prophet

Goal: $\mathrm{ALG} \geq(?) \cdot \mathrm{OPT}$

Known results

Optimal, backward-induction solution: $\mathrm{ALG} \geq 0.5 \cdot \mathrm{OPT}$.

${ }^{1}$ Further reading:
http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

Known results

Optimal, backward-induction solution: ALG $\geq 0.5 \cdot$ OPT.
Samuel-Cahn 1984: a threshold policy achieves 0.5 :
1 Let $\tau=$ median of $\max _{i} X_{i}$
2 Stop at first X_{i} exceeding τ

[^0]
Known results

Optimal, backward-induction solution: ALG $\geq 0.5 \cdot$ OPT.

Samuel-Cahn 1984: a threshold policy achieves 0.5 :
1 Let $\tau=$ median of $\max _{i} X_{i}$
2 Stop at first X_{i} exceeding τ

Observed by Kleinberg+Weinberg 2012: $\tau=0.5 \mathbb{E}\left[\max _{i} X_{i}\right]$ also achieves 0.5 approximation ratio. ${ }^{1}$

[^1]
Half-the-expected-max policy

Proof.

Let $P=\operatorname{Pr}\left[\max _{i} X_{i} \geq \tau\right]$.

$$
\begin{aligned}
\mathbb{E}[\mathrm{ALG}] & =P \cdot \tau+\sum_{i=1}^{n} \operatorname{Pr}\left[\max _{i^{\prime}<i} X_{i^{\prime}}<\tau\right] \mathbb{E}\left[\left(X_{i}-\tau\right)^{+}\right] \\
& \geq P \cdot \tau+(1-P) \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-\tau\right)^{+}\right] \\
& \geq P \cdot \tau+(1-P) \mathbb{E}\left[\max _{i}\left(X_{i}-\tau\right)^{+}\right] \\
& \geq P \cdot \tau+(1-P)\left(\mathbb{E}\left[\max _{i} X_{i}\right]-\tau\right) \\
& \geq P \cdot \tau+(1-P) \tau \\
& =\tau
\end{aligned}
$$

Why threshold policies?

1 Threshold policies are robust
Variables can arrive in any order, ...

Why threshold policies?

1 Threshold policies are robust
Variables can arrive in any order, ...
2 Single-item auction:
■ Buyers arrive sequentially with secret valuations X_{i}

Why threshold policies?

1 Threshold policies are robust
Variables can arrive in any order, ...
2 Single-item auction:

- Buyers arrive sequentially with secret valuations X_{i}
- Post a price τ
- First buyer with $X_{i} \geq \tau$ purchases
- "welfare" ≥ 0.5 optimal

This work: correlations

What if X_{1}, \ldots, X_{n} are correlated?

(Known: constant-factor approx cannot be achieved)

This work: correlations

What if X_{1}, \ldots, X_{n} are correlated?
(Known: constant-factor approx cannot be achieved)
Question 1: how to model (limited) correlation?

This work: correlations

What if X_{1}, \ldots, X_{n} are correlated?
(Known: constant-factor approx cannot be achieved)
Question 1: how to model (limited) correlation?

Question 2: do threshold policies give prophet inequalities?

Outline:

- The linear correlations model
- Lower bound instance
- Key tool: Augmentation Lemma
- Results

Linear correlations model

Assume: there exist independent Y_{1}, \ldots, Y_{m} such that

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{Y}
$$

for $A \in \mathbb{R}_{\geq 0}^{m \times n}$.

Linear correlations model

Assume: there exist independent Y_{1}, \ldots, Y_{m} such that

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{Y}
$$

for $A \in \mathbb{R}_{\geq 0}^{m \times n}$.
Parameters:

- ℓ column sparsity (max. nonzero entries per column)
- k row sparsity

Linear correlations model

Assume: there exist independent Y_{1}, \ldots, Y_{m} such that

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{Y}
$$

for $A \in \mathbb{R}_{\geq 0}^{m \times n}$.

Parameters:

- ℓ column sparsity (max. nonzero entries per column)
- k row sparsity

Recall: Algorithm knows A and distributions of Y, but only observes realizations of \mathbf{X}.

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min \{\ell, k\}}\right)$ approximation ratio.

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min \{\ell, k\}}\right)$ approximation ratio.

Tower variables:
$Y_{j}= \begin{cases}\frac{1}{\epsilon^{j}} & \text { w.prob. } \epsilon^{j} \\ 0 & \text { o.w. }\end{cases}$

$$
\begin{aligned}
X_{1} & =Y_{1}+\epsilon \cdot Y_{2}+\cdots+\epsilon^{n} Y_{n} \\
X_{2} & =Y_{2}+\epsilon \cdot Y_{3}+\cdots+\epsilon^{n-1} Y_{n} \\
\vdots & \\
X_{n-1} & =Y_{n-1}+\epsilon Y_{n} \\
X_{n} & =Y_{n}
\end{aligned}
$$

Relevent ideas.

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min \{\ell, k\}}\right)$ approximation ratio.

$$
\begin{aligned}
& \text { Tower variables: } \\
& \begin{aligned}
& Y_{j}= \begin{cases}\frac{1}{\epsilon^{j}} & \text { w.prob. } \epsilon^{j} \\
0 & \text { o.w. }\end{cases} \\
& X_{1}=Y_{1}+\epsilon \cdot Y_{2}+\cdots+\epsilon^{n} Y_{n}
\end{aligned} \\
& X_{2}
\end{aligned}=Y_{2}+\epsilon \cdot Y_{3}+\cdots+\epsilon^{n-1} Y_{n}, ~ \begin{aligned}
& \\
& \vdots \\
& X_{n-1}=Y_{n-1}+\epsilon Y_{n} \\
& X_{n}=Y_{n}
\end{aligned}
$$

Relevent ideas. Essentially, at most one Y_{j} is nonzero.

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min \{\ell, k\}}\right)$ approximation ratio.

Tower variables:
 $Y_{j}= \begin{cases}\frac{1}{\epsilon^{j}} & \text { w.prob. } \epsilon^{j} \\ 0 & \text { o.w. }\end{cases}$

Relevent ideas. Essentially, at most one Y_{j} is nonzero.

OPT $\approx n$ because it gets 1 from each Y_{j} on avg.
$X_{2}=Y_{2}+\epsilon \cdot Y_{3}+\cdots+\epsilon^{n-1} Y_{n}$ \vdots

$$
\begin{aligned}
X_{n-1} & =Y_{n-1}+\epsilon Y_{n} \\
X_{n} & =Y_{n}
\end{aligned}
$$

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min \{\ell, k\}}\right)$ approximation ratio.

Tower variables:
 $Y_{j}= \begin{cases}\frac{1}{\epsilon^{j}} & \text { w.prob. } \epsilon^{j} \\ 0 & \text { o.w. }\end{cases}$

Relevent ideas. Essentially, at most one Y_{j} is nonzero.

OPT $\approx n$ because it gets 1 from each Y_{j} on avg.

ALG ≈ 1 (consider dilemma when

$$
\begin{aligned}
& X_{1}=Y_{1}+\epsilon \cdot Y_{2}+\cdots+\epsilon^{n} Y_{n} \\
& X_{2}=Y_{2}+\epsilon \cdot Y_{3}+\cdots+\epsilon^{n-1} Y_{n}
\end{aligned}
$$

$$
\vdots
$$

$$
\left.X_{i} \neq 0\right)
$$ $\left.X_{i} \neq 0\right)$.

$$
\begin{aligned}
X_{n-1} & =Y_{n-1}+\epsilon Y_{n} \\
X_{n} & =Y_{n}
\end{aligned}
$$

Even for $\ell=k=2$, threshold algorithms achieve at best $\frac{1}{n}$.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min \{\ell, k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e} \frac{1}{\ell} \mathrm{OPT}$.

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e^{3}} \frac{1}{k}$ OPT.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min \{\ell, k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e} \frac{1}{\ell} \mathrm{OPT}$.

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e^{3}} \frac{1}{k}$ OPT.
Inclusion-threshold: Commit to discarding certain X_{i} in advance; apply a threshold to the rest.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min \{\ell, k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e} \frac{1}{\ell} \mathrm{OPT}$.

Theorem

There is an inclusion-threshold algorithm achieving ALG $\geq \frac{1}{2 e^{3}} \frac{1}{k} \mathrm{OPT}$.
Inclusion-threshold: Commit to discarding certain X_{i} in advance; apply a threshold to the rest.

Hope: approximate original independent prophets problem on a $\frac{1}{\ell}$ fraction of the input.

Problem: correlations still remain!

Key tool: Augmented Prophets Problem

Prophet instances of the form $X_{i}=Z_{i}+W_{i}$ where:

- Z_{i} is independent of X_{1}, \ldots, X_{i-1}

Key tool: Augmented Prophets Problem

Prophet instances of the form $X_{i}=Z_{i}+W_{i}$ where:

- Z_{i} is independent of X_{1}, \ldots, X_{i-1}
- but W_{i} may be chosen adversarially conditioned on $Z_{1}, W_{1}, \ldots, Z_{i}$.

Key tool: Augmented Prophets Problem

Prophet instances of the form $X_{i}=Z_{i}+W_{i}$ where:

- Z_{i} is independent of X_{1}, \ldots, X_{i-1}
- but W_{i} may be chosen adversarially conditioned on $Z_{1}, W_{1}, \ldots, Z_{i}$.
- however $\mathrm{OPT}=\max _{i} Z_{i}$.

Key tool: Augmented Prophets Problem

Prophet instances of the form $X_{i}=Z_{i}+W_{i}$ where:

- Z_{i} is independent of X_{1}, \ldots, X_{i-1}
- but W_{i} may be chosen adversarially conditioned on $Z_{1}, W_{1}, \ldots, Z_{i}$.
- however $\mathrm{OPT}=\max _{i} Z_{i}$.

Story:

- We have a standard prophets problem Z_{1}, \ldots, Z_{n}.
- But a mischievious genie intercepts and augments arrivals with W_{i}
- Genie can only increase X_{i} but tries to mess up ALG
- The genie cannot see the future (Z_{i+1} is independent of W_{i}, etc)

Key tool: Augmented Prophets Problem

Prophet instances of the form $X_{i}=Z_{i}+W_{i}$ where:

- Z_{i} is independent of X_{1}, \ldots, X_{i-1}
- but W_{i} may be chosen adversarially conditioned on $Z_{1}, W_{1}, \ldots, Z_{i}$.
- however $\mathrm{OPT}=\max _{i} Z_{i}$.

Story:

- We have a standard prophets problem Z_{1}, \ldots, Z_{n}.
- But a mischievious genie intercepts and augments arrivals with W_{i}
- Genie can only increase X_{i} but tries to mess up ALG
- The genie cannot see the future (Z_{i+1} is independent of W_{i}, etc)

Fact: median-of-max rule achieves 0 on augmented prophets problem! $X_{i}=$ i.i.d. Bernoulli(ϵ); augment first arrival slightly.

Lemma (Augmentation Lemma)

Setting a threshold $\tau=0.5 \mathbb{E}\left[\max _{i} Z_{i}\right]$ achieves $\mathrm{ALG} \geq 0.5 \cdot \mathrm{OPT}$ on the augmented prophets problem.
\Longrightarrow ignore the genie!

Proof.

Let $P=\operatorname{Pr}\left[\max _{i} X_{i} \geq \tau\right]$. Let E_{i} be event that $\max _{i^{\prime}<i} X_{i^{\prime}}<\tau$.

$$
\begin{aligned}
\mathbb{E}[\mathrm{ALG}] & =P \cdot \tau+\sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right] \mathbb{E}\left[\left(X_{i}-\tau\right)^{+} \mid E_{i}\right] \\
& \geq P \cdot \tau+(1-P) \sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}-\tau\right)^{+} \mid E_{i}\right] \\
& \geq P \cdot \tau+(1-P) \sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}-\tau\right)^{+}\right] \\
& =\tau
\end{aligned}
$$

Proof of Theorem 2

Column sparsity $\ell:$ Each Y_{j} appears in at most ℓ different arrivals X_{i}. Algorithm:
1 Include each X_{i} independently with prob. $\frac{1}{\ell}$; discard others.
2 Let $T_{i}=\left\{j: A_{i j}>0\right.$ and for all included $\left.i^{\prime}<i, A_{i^{\prime} j}=0\right\}$.
3 Let $Z_{i}=\sum_{j \in T_{i}} A_{i j} Y_{j}$
4 Let $W_{i}=\sum_{j \notin T_{i}} A_{i j} Y_{j}$
5 Solve augmented prophets problem on only included $X_{i}=Z_{i}+W_{i}$

Proof of Theorem 2

Column sparsity ℓ : Each Y_{j} appears in at most ℓ different arrivals X_{i}. Algorithm:
1 Include each X_{i} independently with prob. $\frac{1}{\ell}$; discard others.
2 Let $T_{i}=\left\{j: A_{i j}>0\right.$ and for all included $\left.i^{\prime}<i, A_{i^{\prime} j}=0\right\}$.
3 Let $Z_{i}=\sum_{j \in T_{i}} A_{i j} Y_{j}$
4 Let $W_{i}=\sum_{j \notin T_{i}} A_{i j} Y_{j}$
5 Solve augmented prophets problem on only included $X_{i}=Z_{i}+W_{i}$
Fact (Augmentation Lemma): ALG $\geq \frac{1}{2} \mathbb{E}\left[\max _{i} Z_{i}\right]$.

Proof of Theorem 2

Column sparsity ℓ : Each Y_{j} appears in at most ℓ different arrivals X_{i}. Algorithm:
1 Include each X_{i} independently with prob. $\frac{1}{\ell}$; discard others.
2 Let $T_{i}=\left\{j: A_{i j}>0\right.$ and for all included $\left.i^{\prime}<i, A_{i^{\prime} j}=0\right\}$.
3 Let $Z_{i}=\sum_{j \in T_{i}} A_{i j} Y_{j}$
4 Let $W_{i}=\sum_{j \notin T_{i}} A_{i j} Y_{j}$
5 Solve augmented prophets problem on only included $X_{i}=Z_{i}+W_{i}$
Fact (Augmentation Lemma): $\operatorname{ALG} \geq \frac{1}{2} \mathbb{E}\left[\max _{i} Z_{i}\right]$.
Claim: $\mathbb{E}\left[\max _{i} Z_{i}\right] \geq \frac{1}{e} \frac{1}{\ell} \mathbb{E}\left[\max _{i} X_{i}\right]$.
Proof: each Y_{j} appears in exactly one included X_{i} w.prob. $\geq \frac{1}{e} \frac{1}{\ell}$.

Proof of Theorem 3

Row sparsity k : Each X_{i} depends on at most k different variables Y_{j}.

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_{i}=0.00000001 Y_{1}$
- Row sparsity is unchanged

Proof of Theorem 3

Row sparsity k : Each X_{i} depends on at most k different variables Y_{j}.

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_{i}=0.00000001 Y_{1}$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Proof of Theorem 3

Row sparsity k : Each X_{i} depends on at most k different variables Y_{j}.

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_{i}=0.00000001 Y_{1}$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Algorithm outline:

1 Construct subsampled set S of arrivals
2 Construct Z_{i}, W_{i} and use augmentation threshold as before

Proof of Theorem 3

Row sparsity k : Each X_{i} depends on at most k different variables Y_{j}.

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_{i}=0.00000001 Y_{1}$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Algorithm outline:

1 Construct subsampled set S of arrivals
2 Construct Z_{i}, W_{i} and use augmentation threshold as before

Claim: We have a subsampling scheme such that $\mathbb{E}\left[\max _{i} Z_{i}\right] \geq \frac{1}{e^{3}} \frac{1}{k} \mathbb{E}\left[\max _{i} X_{i}\right]$.

Claim: We have a subsampling scheme such that $\mathbb{E}\left[\max _{i} Z_{i}\right] \geq \frac{1}{e^{3}} \frac{1}{k} \mathbb{E}\left[\max _{i} X_{i}\right]$.

Scheme to construct $S \subseteq\{1, \ldots, n\}$:
1 For each Y_{j}, let $i^{*}(j)=\arg \max _{i} A_{i j}$.
2 Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^{*}(j) j^{\prime}}>0$.
3 Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
4 For $t=1, \ldots, m$, w.prob. $\frac{1}{k}$ add $i^{*}(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim: We have a subsampling scheme such that $\mathbb{E}\left[\max _{i} Z_{i}\right] \geq \frac{1}{e^{3}} \frac{1}{k} \mathbb{E}\left[\max _{i} X_{i}\right]$.

Scheme to construct $S \subseteq\{1, \ldots, n\}$:
1 For each Y_{j}, let $i^{*}(j)=\arg \max _{i} A_{i j}$.
2 Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^{*}(j) j^{\prime}}>0$.
3 Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
4 For $t=1, \ldots, m$, w.prob. $\frac{1}{k}$ add $i^{*}(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim 1: Such a permutation π exists.
Out-degree $\leq k$, so average in-degree $\leq k$, so some $v x$ can be placed last; repeat.

Claim: We have a subsampling scheme such that $\mathbb{E}\left[\max _{i} Z_{i}\right] \geq \frac{1}{e^{3}} \frac{1}{k} \mathbb{E}\left[\max _{i} X_{i}\right]$.

Scheme to construct $S \subseteq\{1, \ldots, n\}$:
1 For each Y_{j}, let $i^{*}(j)=\arg \max _{i} A_{i j}$.
2 Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^{*}(j) j^{\prime}}>0$.
3 Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
4 For $t=1, \ldots, m$, w.prob. $\frac{1}{k}$ add $i^{*}(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim 1: Such a permutation π exists.
Out-degree $\leq k$, so average in-degree $\leq k$, so some $v x$ can be placed last; repeat.
Claim 2: $Z_{i^{*}(j)}=Y_{j}$ w.prob. $\geq \frac{1}{e^{3}} \frac{1}{\ell}$ (and then no $Z_{i^{\prime}}$ includes Y_{j}). It has $\leq 2 k$ edges to earlier vertices, which all fail w.prob. $\geq \frac{1}{e^{2}}$; then it is chosen w.prob. $\frac{1}{\ell}$; then all others with $A_{i^{*}(j) j^{\prime}}>0$ fail to be included w.prob. $\geq \frac{1}{e}$.

Extensions

Suppose: algorithm can take $\leq r$ arrivals.
" r-uniform matroid constraint"
$\mathrm{OPT}=$ sum of r largest $X_{i} \mathrm{~s}$

Extensions

Suppose: algorithm can take $\leq r$ arrivals.
" r-uniform matroid constraint"
$\mathrm{OPT}=$ sum of r largest $X_{i} \mathrm{~s}$
Observation: Lower-bound can be extended: For fixed ℓ, unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Extensions

Suppose: algorithm can take $\leq r$ arrivals.
" r-uniform matroid constraint"
$\mathrm{OPT}=$ sum of r largest $X_{i} \mathrm{~s}$
Observation: Lower-bound can be extended: For fixed ℓ, unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Theorem: For fixed k, as $n, r \rightarrow \infty$, we can achieve $1-o(1)$ approximation ratio.

Extensions

Suppose: algorithm can take $\leq r$ arrivals.
" r-uniform matroid constraint"
$\mathrm{OPT}=$ sum of r largest $X_{i} \mathrm{~s}$
Observation: Lower-bound can be extended: For fixed ℓ, unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Theorem: For fixed k, as $n, r \rightarrow \infty$, we can achieve $1-o(1)$ approximation ratio.

Key ingredient: An Augmentation Lemma for the cardinality- r prophet problem.
Much harder!

Recap

Prophet problem with linear correlations:

$$
\mathbf{X}=\mathbf{A} \cdot \mathbf{Y}
$$

Augmentation Lemma: There exists a 0.5 -approx-ratio alg. for the augmented prophets problem.

Main result: Inclusion-threshold algorithms achieve

$$
\Omega\left(\frac{1}{\min \{\text { row sparsity, col sparsity }\}}\right)
$$

and this is tight for any algorithm.

Tight results for cardinality- k version as well; reveals unbounded col. sparsity is the harder problem.

[^0]: ${ }^{1}$ Further reading:
 http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

[^1]: ${ }^{1}$ Further reading:
 http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

