Prophet Inequalities with Linear Correlations

Nicole Immorlica Microsoft Research Sahil Singla Princeton Bo Waggoner U. Colorado Oct. 2019

Outline:

- 1 Prophet inequalities overview
- 2 This work: introducing correlations

Given: independent X_1, \ldots, X_n , known distributions

Given: independent X_1, \ldots, X_n , known distributions

Realizations are revealed one by one algorithm can stop at any time i and take X_i

Given: independent X_1, \ldots, X_n , known distributions

Realizations are revealed one by one algorithm can stop at any time i and take X_i

 $OPT := \max_i X_i$

achieved by the prophet

Given: independent X_1, \ldots, X_n , known distributions

Realizations are revealed one by onealgorithm can stop at any time i and take X_i

 $OPT := \max_i X_i$

Goal: ALG \geq (?) · OPT

achieved by the prophet

"prophet inequality"

Known results

Optimal, backward-induction solution: $ALG \geq 0.5 \cdot OPT.$

http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

¹Further reading:

Known results

Optimal, backward-induction solution: $ALG \ge 0.5 \cdot OPT$.

Samuel-Cahn 1984: a threshold policy achieves 0.5:

- 1 Let $\tau = \text{median of } \max_i X_i$
- **2** Stop at first X_i exceeding τ

http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

¹Further reading:

Known results

Optimal, backward-induction solution: $ALG \ge 0.5 \cdot OPT$.

Samuel-Cahn 1984: a threshold policy achieves 0.5:

- 1 Let $\tau = \text{median of } \max_i X_i$
- **2** Stop at first X_i exceeding τ

Observed by Kleinberg+Weinberg 2012: $\tau = 0.5 \mathbb{E} [\max_i X_i]$ also achieves 0.5 approximation ratio.¹

¹Further reading:

http://bowaggoner.com/blog/2018/08-25-prophet-inequalities/index.html

Half-the-expected-max policy

Proof.

Let $P = \Pr[\max_i X_i \ge \tau].$

$$\mathbb{E}[\text{ALG}] = P \cdot \tau + \sum_{i=1}^{n} \Pr\left[\max_{i' < i} X_{i'} < \tau\right] \mathbb{E}\left[(X_i - \tau)^+\right]$$

$$\geq P \cdot \tau + (1 - P) \sum_{i=1}^{n} \mathbb{E}\left[(X_i - \tau)^+\right]$$

$$\geq P \cdot \tau + (1 - P) \mathbb{E}\left[\max_i (X_i - \tau)^+\right]$$

$$\geq P \cdot \tau + (1 - P) \left(\mathbb{E}\left[\max_i X_i\right] - \tau\right)$$

$$\geq P \cdot \tau + (1 - P)\tau$$

$$= \tau.$$

Why threshold policies?

1 Threshold policies are **robust**

Variables can arrive in any order, ...

Why threshold policies?

- **1** Threshold policies are **robust** Variables can arrive in any order, ...
- 2 Single-item auction:
 - **B**uyers arrive sequentially with secret valuations X_i

Why threshold policies?

- 1 Threshold policies are **robust** Variables can arrive in any order, ...
- 2 Single-item auction:
 - **B**uyers arrive sequentially with secret valuations X_i
 - Post a price τ
 - First buyer with $X_i \ge \tau$ purchases
 - "welfare" ≥ 0.5 optimal

This work: correlations

What if X_1, \ldots, X_n are **correlated**?

(Known: constant-factor approx cannot be achieved)

This work: correlations

What if X_1, \ldots, X_n are **correlated**?

(Known: constant-factor approx cannot be achieved)

Question 1: how to model (limited) correlation?

This work: correlations

What if X_1, \ldots, X_n are **correlated**?

(Known: constant-factor approx **cannot** be achieved)

Question 1: how to model (limited) correlation?

Question 2: do threshold policies give prophet inequalities?

Outline:

- The linear correlations model
- Lower bound instance
- Key tool: Augmentation Lemma
- Results

Linear correlations model

Assume: there exist independent Y_1, \ldots, Y_m such that

 $\mathbf{X} = \mathbf{A} \cdot \mathbf{Y}$

for $A \in \mathbb{R}_{\geq 0}^{m \times n}$.

Linear correlations model

Assume: there exist independent Y_1, \ldots, Y_m such that

 $\mathbf{X} = \mathbf{A} \cdot \mathbf{Y}$

for $A \in \mathbb{R}_{>0}^{m \times n}$.

Parameters:

- ℓ column sparsity (max. nonzero entries per column)
- k row sparsity

Linear correlations model

Assume: there exist independent Y_1, \ldots, Y_m such that

 $\mathbf{X} = \mathbf{A} \cdot \mathbf{Y}$

for $A \in \mathbb{R}_{>0}^{m \times n}$.

Parameters:

- ℓ column sparsity (max. nonzero entries per column)
- k row sparsity

Recall: Algorithm knows A and distributions of Y, but only observes realizations of X.

Lower bound

Theorem

No algorithm can guarantee better than $O\left(\frac{1}{\min\{\ell,k\}}\right)$ approximation ratio.

No algorithm can guarantee better than $O\left(\frac{1}{\min\{\ell,k\}}\right)$ approximation ratio.

Tower variables: $Y_j = \begin{cases} \frac{1}{\epsilon^j} & \text{w.prob. } \epsilon^j \\ 0 & \text{o.w.} \end{cases}$ Relevent ideas.

$$X_1 = Y_1 + \epsilon \cdot Y_2 + \dots + \epsilon^n Y_n$$
$$X_2 = Y_2 + \epsilon \cdot Y_3 + \dots + \epsilon^{n-1} Y_n$$
$$\vdots$$
$$X_{n-1} = Y_{n-1} + \epsilon Y_n$$
$$X_n = Y_n$$

No algorithm can guarantee better than $O\left(\frac{1}{\min\{\ell,k\}}\right)$ approximation ratio.

Tower variables: $Y_j = \begin{cases} \frac{1}{\epsilon^j} & \text{w.prob. } \epsilon^j \\ 0 & \text{o.w.} \end{cases}$

Relevent ideas. Essentially, at most one Y_j is nonzero.

$$X_1 = Y_1 + \epsilon \cdot Y_2 + \dots + \epsilon^n Y_n$$

$$X_2 = Y_2 + \epsilon \cdot Y_3 + \dots + \epsilon^{n-1} Y_n$$

$$\vdots$$

$$X_{n-1} = Y_{n-1} + \epsilon Y_n$$

$$X_n = Y_n$$

 $X_n = Y_n$

No algorithm can guarantee better than $O\left(\frac{1}{\min\{\ell,k\}}\right)$ approximation ratio.

Tower variables: $Y_j = \begin{cases} \frac{1}{\epsilon^j} & \text{w.prob. } \epsilon^j \\ 0 & \text{o.w.} \end{cases}$

$$X_1 = Y_1 + \epsilon \cdot Y_2 + \dots + \epsilon^n Y_n$$
$$X_2 = Y_2 + \epsilon \cdot Y_3 + \dots + \epsilon^{n-1} Y_n$$
$$\vdots$$
$$X_{n-1} = Y_{n-1} + \epsilon Y_n$$

Relevent ideas. Essentially, at most one Y_j is nonzero.

 $OPT \approx n$ because it gets 1 from each Y_j on avg.

ALG ≈ 1 (consider dilemma when $X_i \neq 0$).

No algorithm can guarantee better than $O\left(\frac{1}{\min\{\ell,k\}}\right)$ approximation ratio.

Tower variables: $Y_j = \begin{cases} \frac{1}{\epsilon^j} & \text{w.prob. } \epsilon^j \\ 0 & \text{o.w.} \end{cases}$

$$X_{1} = Y_{1} + \epsilon \cdot Y_{2} + \dots + \epsilon^{n} Y_{n}$$
$$X_{2} = Y_{2} + \epsilon \cdot Y_{3} + \dots + \epsilon^{n-1} Y_{n}$$
$$\vdots$$
$$X_{n-1} = Y_{n-1} + \epsilon Y_{n}$$
$$X_{n} = Y_{n}$$

Relevent ideas. Essentially, at most one Y_j is nonzero.

 $OPT \approx n$ because it gets 1 from each Y_j on avg.

ALG ≈ 1 (consider dilemma when $X_i \neq 0$).

Even for $\ell = k = 2$, threshold algorithms achieve at best $\frac{1}{n}$.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min\{\ell,k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving $ALG \geq \frac{1}{2e} \frac{1}{\ell} OPT$.

Theorem

There is an inclusion-threshold algorithm achieving $ALG \ge \frac{1}{2e^3} \frac{1}{k} OPT$.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min\{\ell,k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving $ALG \geq \frac{1}{2e} \frac{1}{\ell} OPT$.

Theorem

There is an inclusion-threshold algorithm achieving $ALG \ge \frac{1}{2e^3} \frac{1}{k} OPT$.

Inclusion-threshold: Commit to **discarding** certain X_i in advance; apply a threshold to the rest.

Upper bounds

Main idea: We can achieve a matching $\Omega\left(\frac{1}{\min\{\ell,k\}}\right)$ bound by proving:

Theorem

There is an inclusion-threshold algorithm achieving $ALG \geq \frac{1}{2e} \frac{1}{\ell} OPT$.

Theorem

There is an inclusion-threshold algorithm achieving $ALG \ge \frac{1}{2e^3} \frac{1}{k} OPT$.

Inclusion-threshold: Commit to **discarding** certain X_i in advance; apply a threshold to the rest.

Hope: approximate original independent prophets problem on a $\frac{1}{\ell}$ fraction of the input.

Problem: correlations still remain!

Prophet instances of the form $X_i = Z_i + W_i$ where:

\blacksquare Z_i is independent of X_1, \ldots, X_{i-1}

Prophet instances of the form $X_i = Z_i + W_i$ where:

- **\blacksquare** Z_i is independent of X_1, \ldots, X_{i-1}
- **but** W_i may be chosen adversarially conditioned on Z_1, W_1, \ldots, Z_i .

Prophet instances of the form $X_i = Z_i + W_i$ where:

- **\blacksquare** Z_i is independent of X_1, \ldots, X_{i-1}
- but W_i may be chosen adversarially conditioned on Z_1, W_1, \ldots, Z_i .

• however $OPT = \max_i Z_i$.

Prophet instances of the form $X_i = Z_i + W_i$ where:

- Z_i is independent of X_1, \ldots, X_{i-1}
- **but** W_i may be chosen adversarially conditioned on Z_1, W_1, \ldots, Z_i .
- however $OPT = \max_i Z_i$.

Story:

- We have a standard prophets problem Z_1, \ldots, Z_n .
- But a mischievious genie intercepts and augments arrivals with W_i
- Genie can only increase X_i but tries to mess up ALG
- The genie cannot see the future $(Z_{i+1} \text{ is independent of } W_i, \text{ etc})$

Prophet instances of the form $X_i = Z_i + W_i$ where:

- Z_i is independent of X_1, \ldots, X_{i-1}
- **but** W_i may be chosen adversarially conditioned on Z_1, W_1, \ldots, Z_i .
- however $OPT = \max_i Z_i$.

Story:

- We have a standard prophets problem Z_1, \ldots, Z_n .
- But a mischievious genie intercepts and augments arrivals with W_i
- Genie can only increase X_i but tries to mess up ALG
- The genie cannot see the future $(Z_{i+1} \text{ is independent of } W_i, \text{ etc})$

Fact: median-of-max rule achieves 0 on augmented prophets problem! $X_i = i.i.d.$ Bernoulli(ϵ); augment first arrival slightly.

Lemma (Augmentation Lemma)

Setting a threshold $\tau = 0.5 \mathbb{E} [\max_i Z_i]$ achieves $ALG \ge 0.5 \cdot OPT$ on the augmented prophets problem. \implies ignore the genie!

Proof.

Let $P = \Pr[\max_i X_i \ge \tau]$. Let E_i be event that $\max_{i' < i} X_{i'} < \tau$.

$$\mathbb{E}[\mathrm{ALG}] = P \cdot \tau + \sum_{i=1}^{n} \Pr[E_i] \mathbb{E}\left[(X_i - \tau)^+ \mid E_i\right]$$
$$\geq P \cdot \tau + (1 - P) \sum_{i=1}^{n} \mathbb{E}\left[(Z_i - \tau)^+ \mid E_i\right]$$
$$\geq P \cdot \tau + (1 - P) \sum_{i=1}^{n} \mathbb{E}\left[(Z_i - \tau)^+\right]$$

 $= \tau$.

Column sparsity ℓ : Each Y_j appears in at most ℓ different arrivals X_i . Algorithm:

- **1** Include each X_i independently with prob. $\frac{1}{\ell}$; discard others.
- **2** Let $T_i = \{j : A_{ij} > 0 \text{ and for all included } i' < i, A_{i'j} = 0\}.$

3 Let
$$Z_i = \sum_{j \in T_i} A_{ij} Y_j$$

4 Let $W_i = \sum_{j \notin T_i} A_{ij} Y_j$

5 Solve augmented prophets problem on only included $X_i = Z_i + W_i$

Column sparsity ℓ : Each Y_j appears in at most ℓ different arrivals X_i . Algorithm:

- **1** Include each X_i independently with prob. $\frac{1}{\ell}$; discard others.
- **2** Let $T_i = \{j : A_{ij} > 0 \text{ and for all included } i' < i, A_{i'j} = 0\}.$

3 Let
$$Z_i = \sum_{j \in T_i} A_{ij} Y_j$$

4 Let $W_i = \sum_{j \notin T_i} A_{ij} Y_j$

5 Solve augmented prophets problem on only included $X_i = Z_i + W_i$

Fact (Augmentation Lemma): ALG $\geq \frac{1}{2} \mathbb{E}[\max_i Z_i]$.

Column sparsity ℓ : Each Y_j appears in at most ℓ different arrivals X_i . Algorithm:

- **1** Include each X_i independently with prob. $\frac{1}{\ell}$; discard others.
- **2** Let $T_i = \{j : A_{ij} > 0 \text{ and for all included } i' < i, A_{i'j} = 0\}.$

3 Let
$$Z_i = \sum_{j \in T_i} A_{ij} Y_j$$

4 Let $W_i = \sum_{j \notin T_i} A_{ij} Y_j$

5 Solve augmented prophets problem on only included $X_i = Z_i + W_i$

Fact (Augmentation Lemma): ALG $\geq \frac{1}{2} \mathbb{E}[\max_i Z_i]$.

Claim: $\mathbb{E}[\max_i Z_i] \ge \frac{1}{e} \frac{1}{\ell} \mathbb{E}[\max_i X_i].$ Proof: each Y_j appears in exactly one included X_i w.prob. $\ge \frac{1}{e} \frac{1}{\ell}.$

Row sparsity k: Each X_i depends on at most k different variables Y_j .

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_i = 0.00000001Y_1$
- Row sparsity is unchanged

Row sparsity k: Each X_i depends on at most k different variables Y_j .

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_i = 0.00000001Y_1$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Row sparsity k: Each X_i depends on at most k different variables Y_j .

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_i = 0.00000001Y_1$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Algorithm outline:

1 Construct subsampled set S of arrivals

next!

2 Construct Z_i, W_i and use augmentation threshold as before

Row sparsity k: Each X_i depends on at most k different variables Y_j .

Observation:

- Take any instance
- Prepend it with 1 million copies of $X_i = 0.00000001Y_1$
- Row sparsity is unchanged

Conclusion: Subsampling must depend on "importance" of each row.

Algorithm outline:

1 Construct subsampled set S of arrivals

next!

2 Construct Z_i, W_i and use augmentation threshold as before

Claim: We have a subsampling scheme such that $\mathbb{E}[\max_i Z_i] \geq \frac{1}{e^3} \frac{1}{k} \mathbb{E}[\max_i X_i].$

Claim: We have a subsampling scheme such that $\mathbb{E}[\max_i Z_i] \geq \frac{1}{e^3} \frac{1}{k} \mathbb{E}[\max_i X_i].$

Scheme to construct $S \subseteq \{1, \ldots, n\}$:

1 For each
$$Y_j$$
, let $i^*(j) = \arg \max_i A_{ij}$.

2 Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^*(j)j'} > 0$.

- 3 Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
- 4 For t = 1, ..., m, w.prob. $\frac{1}{k}$ add $i^*(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim: We have a subsampling scheme such that $\mathbb{E}[\max_i Z_i] \ge \frac{1}{e^3} \frac{1}{k} \mathbb{E}[\max_i X_i].$

Scheme to construct $S \subseteq \{1, \ldots, n\}$:

1 For each
$$Y_j$$
, let $i^*(j) = \arg \max_i A_{ij}$.

- **2** Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^*(j)j'} > 0$.
- 3 Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
- 4 For t = 1, ..., m, w.prob. $\frac{1}{k}$ add $i^*(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim 1: Such a permutation π exists.

Out-degree $\leq k$, so average in-degree $\leq k$, so some vx can be placed last; repeat.

Claim: We have a subsampling scheme such that $\mathbb{E}[\max_i Z_i] \ge \frac{1}{e^3} \frac{1}{k} \mathbb{E}[\max_i X_i].$

Scheme to construct $S \subseteq \{1, \ldots, n\}$:

1 For each
$$Y_j$$
, let $i^*(j) = \arg \max_i A_{ij}$.

- **2** Create graph on $\{1, \ldots, m\}$ with edge (j, j) if $A_{i^*(j)j'} > 0$.
- **3** Permute $\{1, \ldots, m\}$ such that for all t, there are at most k edges from vertices $\pi(1), \ldots, \pi(t-1)$ to $\pi(t)$.
- 4 For t = 1, ..., m, w.prob. $\frac{1}{k}$ add $i^*(\pi(t))$ to S and delete all vertices from π with edges to or from $\pi(t)$.

Claim 1: Such a permutation π exists.

 $Out-degree \leq k$, so average in-degree $\leq k$, so some vx can be placed last; repeat.

Claim 2: $Z_{i^*(j)} = Y_j$ w.prob. $\geq \frac{1}{e^3} \frac{1}{\ell}$ (and then no $Z_{i'}$ includes Y_j). It has $\leq 2k$ edges to earlier vertices, which all fail w.prob. $\geq \frac{1}{e^2}$; then it is chosen w.prob. $\frac{1}{\ell}$; then all others with $A_{i^*(j)j'} > 0$ fail to be included w.prob. $\geq \frac{1}{e}$.

Suppose: algorithm can take $\leq r$ arrivals. "r-uniform matroid constraint" OPT = sum of r largest X_i s

Suppose: algorithm can take $\leq r$ arrivals. "r-uniform matroid constraint" OPT = sum of r largest X_i s

Observation: Lower-bound can be extended: For fixed ℓ , unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Suppose: algorithm can take $\leq r$ arrivals. "r-uniform matroid constraint" OPT = sum of r largest X_i s

Observation: Lower-bound can be extended: For fixed ℓ , unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Theorem: For fixed k, as $n, r \to \infty$, we can achieve 1 - o(1) approximation ratio.

Suppose: algorithm can take $\leq r$ arrivals. "r-uniform matroid constraint" OPT = sum of r largest X_i s

Observation: Lower-bound can be extended: For fixed ℓ , unbounded row sparsity, no algorithm beats $O\left(\frac{1}{\ell}\right)$.

Theorem: For fixed k, as $n, r \to \infty$, we can achieve 1 - o(1) approximation ratio.

Key ingredient: An **Augmentation Lemma** for the cardinality-*r* prophet problem. *Much harder!*

Recap

Prophet problem with linear correlations:

 $\mathbf{X} = \mathbf{A} \cdot \mathbf{Y}$

Augmentation Lemma: There exists a 0.5-approx-ratio alg. for the augmented prophets problem.

Main result: Inclusion-threshold algorithms achieve

$$\Omega\left(\frac{1}{\min\{\mathsf{row sparsity}, \mathsf{col sparsity}\}}\right)$$

and this is tight for any algorithm.

Tight results for cardinality-k version as well; reveals unbounded col. sparsity is the harder problem.