## **Multi-Observation Losses**



#### Bo Waggoner Microsoft Research, NYC

Columbia April 4, 2019

Based on joint work with Rafael Frongillo (U. Colorado, Boulder), Tom Morgan (Harvard), Sebastian Casalaina-Martin (U. Colorado, Boulder), Nishant Mehta (U. Victoria).

# $\mathop{\mathrm{argmin}}_{r\in\mathcal{R}} \mathbb{E}_{y\sim p} \ell(r,y)$

# $\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{\substack{y_1, y_2 \sim p \\ \text{i.i.d.}}}{\mathbb{E}} \ell(r, y_1, y_2)$

# $\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{\substack{y_1, \dots, y_m \sim p \\ \text{i.i.d.}}}{\mathbb{E}} \ell(r, y_1, \dots, y_m)$

- **1** Background: information elicitation what do you get when you minimize a loss?
- **2** Paper 1: Multi-Observation Elicitation (COLT 2017) what changes with multi-observation losses?
- **3** Paper 2: Multi-Observation Regression (AISTATS 2019) what ML problems can they solve?

#### What do you get when you minimize a loss?

$$\Gamma(p) := \underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y)$$
(1)

$$\bullet \ \ell(r,y) = (r-y)^2$$

#### What do you get when you minimize a loss?

$$\Gamma(p) := \underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y)$$
(1)

• 
$$\ell(r, y) = (r - y)^2$$
  $\Gamma(p) = \mathbb{E}_{y \sim p} y \text{ (mean)}$ 

#### What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$
(1)

$$\ell(r,y) = (r-y)^2$$

$$\ell(r,y) = |r-y|$$

$$\Gamma(p) = \mathbb{E}_{y \sim p} y$$
 (mean)

#### What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$
(1)

$$\ell(r, y) = (r - y)^2 \qquad \Gamma(p) = \mathbb{E}_{y \sim p} y \quad (mean) \\ \ell(r, y) = |r - y| \qquad median$$

#### What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$
(1)

$$\begin{split} & \ell(r,y) = (r-y)^2 & \Gamma(p) = \mathbb{E}_{y \sim p} y \quad (\text{mean}) \\ & \ell(r,y) = |r-y| & \text{median} \\ & \ell(r,y) = \begin{cases} 0 & r = y \\ 1 & \text{otherwise} \end{cases} \end{split}$$

#### What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$
(1)

$$\begin{split} & \ell(r,y) = (r-y)^2 & \Gamma(p) = \mathbb{E}_{y \sim p} y \quad (\text{mean}) \\ & \ell(r,y) = |r-y| & \text{median} \\ & \ell(r,y) = \begin{cases} 0 \quad r=y \\ 1 \quad \text{otherwise} & \text{mode} \end{cases} \end{split}$$

#### What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$
(1)

#### Examples:

 $\begin{array}{ll} \ell(r,y) = (r-y)^2 & \Gamma(p) = \mathbb{E}_{y \sim p} y \quad (\text{mean}) \\ \ell(r,y) = |r-y| & \text{median} \\ \ell(r,y) = \begin{cases} 0 & r=y \\ 1 & \text{otherwise} \end{cases} & \text{mode} \\ \ell(r,y) = ?? & \text{variance} \end{cases}$ 

What do you get when you minimize a loss?

$$\Gamma(p) := \operatorname*{argmin}_{r \in \mathcal{R}} \mathbb{E}_{y \sim p} \ell(r, y)$$

Γ: Δ<sub>Y</sub> → 2<sup>R</sup> is a property of the distribution p
 Γ is elicitable if there exists ℓ such that (1) holds

(1)

### **Proposition (Folklore)**

There is no loss function that elicits the variance of p.

## Information elicitation - the picture

The simplex  $\Delta_{\mathcal{Y}}$  for  $\mathcal{Y} = \{10, 20, 30\}$ :



## Information elicitation - the picture

• A property is a partition of the simplex.

• The level set of r is  $\{p : \Gamma(p) = r\}$ .



## Information elicitation - the picture

• A property is a partition of the simplex.

• The level set of r is  $\{p : \Gamma(p) = r\}$ .



# Key basic fact

#### Theorem

If a property is elicitable, then all of its level sets are convex sets.



# Key basic fact

### Theorem

If a property is elicitable, then all of its level sets are convex sets.



# Non-elicitable properties

Known: there is no loss function eliciting the variance. **Suggestions?** 

<sup>&</sup>lt;sup>1</sup>e.g. Frongillo and Kash, 2015

# Non-elicitable properties

Known: there is no loss function eliciting the variance. **Suggestions?** 

Indirect elicitation: elicit **mean** and **second moment**, then calculate.  $\implies$  the **elicitation complexity**<sup>1</sup> of the variance is 2.

<sup>&</sup>lt;sup>1</sup>e.g. Frongillo and Kash, 2015

# Non-elicitable properties

Known: there is no loss function eliciting the variance. **Suggestions?** 

Indirect elicitation: elicit **mean** and **second moment**, then calculate.  $\implies$  the **elicitation complexity**<sup>1</sup> of the variance is 2.

Note: always possible to elicit entire distribution and calculate.  $\implies$  elicitation complexity  $\leq |\mathcal{Y}| - 1$  for all properties.

<sup>&</sup>lt;sup>1</sup>e.g. Frongillo and Kash, 2015

## Final case study: 2-norm

Consider  $\Gamma(p) = \|p\|_2^2 = \sum_y p_y^2$ .

Measures non-uniformity of p



Fact: [FRONGILLO AND KASH, 2015] The elicitation complexity of the 2-norm is  $|\mathcal{Y}| - 1$ .

# Paper 1: (im)possibilities

*Multi-Observation Elicitation.* COLT 2017. Casalaina-Martin, Frongillo, Morgan, Waggoner.

# Paper 1: (im)possibilities

*Multi-Observation Elicitation.* COLT 2017. Casalaina-Martin, Frongillo, Morgan, Waggoner.

#### Goals:

- Propose multi-observation losses.
- Give **upper bounds** avoiding prior impossibilities.
- Develop theory of losses from algebraic geometry.
- Use it to prove **lower bounds**.

# **Example 1: Variance**

Claim 1: Let

$$f(y_1, y_2) = \frac{1}{2} (y_1 - y_2)^2.$$

Then  $\mathbb{E}_{y_1,y_2 \sim p} f(y_1,y_2) = \operatorname{Var}(p).$ 

## **Example 1: Variance**

Claim 1: Let

$$f(y_1, y_2) = \frac{1}{2} (y_1 - y_2)^2.$$
  
Then  $\mathbb{E}_{y_1, y_2 \sim p} f(y_1, y_2) = \operatorname{Var}(p).$ 

#### Claim 2: The multi-observation loss function

$$\ell(r, y_1, y_2) = (r - f(y_1, y_2))^2$$

elicits the variance of p.

# Example 2: 2-norm

Consider 
$$\Gamma(p) = \|p\|_2^2 = \sum_y p_y^2$$
.

# Example 2: 2-norm

Consider 
$$\Gamma(p) = \|p\|_2^2 = \sum_y p_y^2$$
.

Claim 3: Let

$$f(y_1, y_2) = \mathbf{1} [y_1 = y_2].$$

Then  $\mathbb{E}_{y_1, y_2 \sim p} f(y_1, y_2) = \|p\|_2^2$ .

# Example 2: 2-norm

Consider 
$$\Gamma(p) = \|p\|_2^2 = \sum_y p_y^2$$
.

Claim 3: Let

$$f(y_1, y_2) = \mathbf{1} [y_1 = y_2].$$

Then  $\mathbb{E}_{y_1, y_2 \sim p} f(y_1, y_2) = \|p\|_2^2$ .

Claim 4: The multi-observation loss function

$$\ell(r, y_1, y_2) = (r - f(y_1, y_2))^2$$

elicits the 2-norm squared of p.

## Wait a minute!

What about the following transformation?

Let  $p' = p \times p$  (distributions over i.i.d. pairs). Then

$$\mathop{\mathbb{E}}_{y_1,y_2 \sim p} \ell(r,y_1,y_2) = \mathop{\mathbb{E}}_{\bar{y} \sim p'} \ell(r,\bar{y}).$$

So can't we reduce multi-observation elicitation to standard elicitation?

## No...

tetrahedron = distributions on  $\{0,1\}\times\{0,1\}$  arc = i.i.d. distributions



## ... but this can provide lower bounds

### Proposition

The fourth-central moment is not elicitable with any  $\leq 2$  observation loss function.



## Key geometric idea: variance example

Level sets of *m*-observation elicitable properties can be non-convex... ...but they must be **projections** from convex level sets in  $\Delta_{\mathcal{Y}}^m$ .



## Lower bound on number of observations

#### Theorem

If  $\Gamma$  is a *m*-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-*m* polynomial in *p*.

## Lower bound on number of observations

#### Theorem

If  $\Gamma$  is a *m*-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-*m* polynomial in *p*.

Example (variance): 
$$\left\{p:\sum_{y} p_{y}y^{2} - \left(\sum_{y} p_{y}y\right)^{2} = \frac{200}{3}\right\}$$
  
Example (k-norm): 
$$\left\{p:\sum_{y} p_{y}^{k} = 0.168\right\}.$$
#### Lower bound on number of observations

#### Theorem

If  $\Gamma$  is a *m*-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-*m* polynomial in *p*.

#### Theorem (Real Nullstellensatz, extremely roughly)

A linear function can't vanish on a circle.

#### Lower bound on number of observations

#### Theorem

If  $\Gamma$  is a *m*-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-*m* polynomial in *p*.

#### Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the polynomial g vanishes on that level set, and some other conditions hold, then g has degree at least m.

#### Lower bound on number of observations

#### Theorem

If  $\Gamma$  is a *m*-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-*m* polynomial in *p*.

#### Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the polynomial g vanishes on that level set, and some other conditions hold, then g has degree at least m.

#### Corollary

To elicit the k norm requires a k-observation loss.

# Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- **observations**: how many observations used in the loss function?

## Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- observations: how many observations used in the loss function?

**Nontrivial example:** *n*th central moment is elicitable with  $\sqrt{n}$  parameters and  $\sqrt{n}$  observations.

Best we can do separately: n and n.

## Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- observations: how many observations used in the loss function?

#### Theorem (Key example)

The 2-norm requires  $|\mathcal{Y}| - 1$  parameters if using traditional loss functions, but just one parameter using the multi-observation loss

$$\ell(r, y_1, y_2) = \left(r - \mathbf{1}[y_1 = y_2]\right)^2.$$

### Paper 2: generalized regression

*Multi-Observation Regression*. AISTATS 2019. Frongillo, Mehta, Morgan, Waggoner.

# Paper 2: generalized regression

*Multi-Observation Regression.* AISTATS 2019. Frongillo, Mehta, Morgan, Waggoner.

#### Setup:

- Unknown distribution on (x, y) pairs
- Draw set of i.i.d. samples
- Goal: learn hypothesis  $f: \mathcal{X} \to \mathcal{R}$  m

• Example: map x to **expected** y



map x to "summary" of y

### **Dominant paradigm: ERM**

Example: least squares,





### **Dominant paradigm: ERM**

More generally,





### Problem: non-elicitable properties!

Given x, we might want to predict...

- variance of y economics, biological
- upper confidence bound on y
- risk measures
- 2-norm of y

. . .

economics, biology, social science robust design (engineering) finance economics, biology

### Problem: non-elicitable properties!

Given x, we might want to predict...

- variance of y
  economics, biology, social
- upper confidence bound on y
- risk measures
- 2-norm of y

**.**...

economics, biology, social science robust design (engineering) finance economics, biology

#### Prior paradigm does not directly apply!

Default solution: Fit a separate model for each parameter.

### Problem: non-elicitable properties!

Given x, we might want to predict...

- variance of y economics, biology, social
- upper confidence bound on y
- risk measures
- $\blacksquare$  2-norm of y

...

economics, biology, social science robust design (engineering) finance economics, biology

#### Prior paradigm does not directly apply!

Default solution: Fit a separate model for each parameter.

Problems: may need many parameters; VC-dimension issues...

### **Potential VC issues**



# Solution (?): Multi-observation losses

Proposal: Just fit a multi-observation loss!

$$\min_{f} \sum_{x,y} \ell(f(x), y_1, y_2)$$

Problem?

# Solution (?): Multi-observation losses

Proposal: Just fit a multi-observation loss!

$$\min_{f} \sum_{x,y} \ell(f(x), y_1, y_2)$$

Problem?

We only have (x, y) samples, not  $(x, y_1, y_2)!$ 

## Fitting multi-observation losses

Clump data into **metasamples**  $(x, y_1, \ldots, y_m)$ , then do empirical risk minimization:



## Fitting multi-observation losses

Clump data into **metasamples**  $(x, y_1, \ldots, y_m)$ , then do empirical risk minimization:



### Fitting multi-observation losses

Clump data into **metasamples**  $(x, y_1, \ldots, y_m)$ , then do empirical risk minimization:



# Theory

Lipschitz assumption:  $Pr[y \mid x]$  changes slowly in x.

Unbiased algorithm:

- **1** Sample  $x_1, \ldots, x_n$  i.i.d. ignore their y's
- **2** Draw "enough" fresh (x, y) pairs
- **3** Use maximum matching to assign ys to nearby original  $x_i$ .

# Theory

Lipschitz assumption:  $Pr[y \mid x]$  changes slowly in x.

Unbiased algorithm:

- **1** Sample  $x_1, \ldots, x_n$  i.i.d. ignore their y's
- **2** Draw "enough" fresh (x, y) pairs
- **3** Use maximum matching to assign ys to nearby original  $x_i$ .

#### Theorem (Informal)

With probability  $1 - \delta$ , for  $x \in [0, 1]$ , we draw  $\tilde{O}(n)$  samples and

$$Risk(alg) \leq Risk(opt) + O(Rademacher complexity) + O\left(\frac{1}{\sqrt{n}}\right)$$

1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions

- 1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions
- 2 "Corrupted samples".

- 1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions
- 2 "Corrupted samples".
  - $y_j$  was sampled from a distribution close to  $\Pr[y \mid x]$ .

- 1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions
- 2 "Corrupted samples".
  - $y_j$  was sampled from a distribution close to  $\Pr[y \mid x]$ .
  - View that distribution as a mixture of  $Pr[y \mid x]$  and arbitrary.

- 1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions
- 2 "Corrupted samples".
  - $y_j$  was sampled from a distribution close to  $\Pr[y \mid x]$ .
  - View that distribution as a mixture of  $\Pr[y \mid x]$  and arbitrary.
  - With good probability, all  $y_j$  in metasample came from  $\Pr[y \mid x]$ .

- 1 With high probability, for all but  $O(\sqrt{n})$  metasamples  $(x, y_1, \ldots, y_m)$ , all  $y_j$  were sampled "nearby". holds for arbitrary distributions
- 2 "Corrupted samples".
  - $y_j$  was sampled from a distribution close to  $\Pr[y \mid x]$ .
  - View that distribution as a mixture of  $\Pr[y \mid x]$  and arbitrary.
  - With good probability, all  $y_j$  in metasample came from  $\Pr[y \mid x]$ .
  - Only lose  $O(\sqrt{n})$  metasamples to bad mixtures.

# **Simulations**

#### Setup:

- $\blacksquare \mathsf{Draw} \ x \sim U[0,1]$
- $\bullet \quad \mathsf{Draw} \ y = g(x) + N(0,1)$
- Goal: fit  $Var(y \mid x)$

answer = 1

# Simulations

#### Setup:

- $\blacksquare \mathsf{Draw} \ x \sim U[0,1]$
- Draw y = g(x) + N(0,1)
- Goal: fit  $Var(y \mid x)$

answer = 1

#### Algorithms:

- "2mom linear" fit linear functions to moments
- "2mom quad" fit quadratics to moments
- "improved" our theoretically-rigorous algorithm
- our other clustering algorithms

#### **Observations from simulations**

#### Difficult task:

As expected, default approaches perform very poorly.



#### **Observations from simulations**

**Easy task:** Multi-observation approach can still be a better choice.



Studied multi-observation losses  $\ell(x, y_1, \ldots, y_m)$ 

- Studied multi-observation losses  $\ell(x, y_1, \dots, y_m)$
- Elicitation complexity: number of parameters and/or observations needed

- Studied multi-observation losses  $\ell(x, y_1, \dots, y_m)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed

- Studied multi-observation losses  $\ell(x, y_1, \dots, y_m)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed

- Studied multi-observation losses  $\ell(x, y_1, \dots, y_m)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed
- Algorithms for **metasamples** and multi-obs. ERM
#### **Summary**

- Studied multi-observation losses  $\ell(x, y_1, \dots, y_m)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed
- Algorithms for **metasamples** and multi-obs. ERM
- Examples with huge improvement in sample complexity

## Future directions (1/2)

 Elicitation complexity: more upper and lower bounds central moments, multiple parameters & observations



# Future directions (1/2)

- Elicitation complexity: more upper and lower bounds central moments, multiple parameters & observations
- Algorithms (or assumptions) in high dimensions information-theoretic barriers in general



# Future directions (1/2)

- Elicitation complexity: more upper and lower bounds central moments, multiple parameters & observations
- Algorithms (or assumptions) in high dimensions information-theoretic barriers in general
- $\blacksquare$  Partner with practitioners  $\rightarrow$  useful applications



# Future directions (2/2)

- Multi-Observation Elicitation, COLT 2017.
- Multi-Observation Regression, AISTATS 2019.
- ... next in the franchise?

# Future directions (2/2)

- Multi-Observation Elicitation, COLT 2017.
- Multi-Observation Regression, AISTATS 2019.
- ... next in the franchise?

Proceedings of Machine Learning Research vol XX:1–1, 2019

#### Multi-Observation: Apocalypse

#### Abstract

No algorithm could have predicted this...