Multi-Observation Losses

Bo Waggoner
Microsoft Research, NYC
Columbia
April 4, 2019
Based on joint work with Rafael Frongillo (U. Colorado, Boulder), Tom Morgan (Harvard), Sebastian Casalaina-Martin (U. Colorado, Boulder), Nishant Mehta (U. Victoria).

$\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y)$

$$
\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{\substack{y_{1}, y_{2} \sim p \\ \text { i.i.d. }}}{\mathbb{E}} \ell\left(r, y_{1}, y_{2}\right)
$$

$$
\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{\substack{y_{1}, \ldots, y_{m} \sim p \\ \text { i.i.d. }}}{\mathbb{E}} \ell\left(r, y_{1}, \ldots, y_{m}\right)
$$

Outline

1 Background: information elicitation what do you get when you minimize a loss?

2 Paper 1: Multi-Observation Elicitation (COLT 2017) what changes with multi-observation losses?

3 Paper 2: Multi-Observation Regression (AISTATS 2019) what ML problems can they solve?

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$

$$
\left.\Gamma(p)=\mathbb{E}_{y \sim p} y \quad \text { (mean }\right)
$$

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$
- $\ell(r, y)=|r-y|$
$\Gamma(p)=\mathbb{E}_{y \sim p} y \quad$ (mean)

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

$$
\begin{aligned}
& \ell(r, y)=(r-y)^{2} \\
& \ell(r, y)=|r-y|
\end{aligned}
$$

$$
\Gamma(p)=\mathbb{E}_{y \sim p} y \quad(\text { mean })
$$

median

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$
$\Gamma(p)=\mathbb{E}_{y \sim p} y$ (mean)
- $\ell(r, y)=|r-y|$ median
- $\ell(r, y)= \begin{cases}0 & r=y \\ 1 & \text { otherwise }\end{cases}$

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$
$\Gamma(p)=\mathbb{E}_{y \sim p} y \quad$ (mean)
- $\ell(r, y)=|r-y|$ median
- $\ell(r, y)= \begin{cases}0 & r=y \\ 1 & \text { otherwise }\end{cases}$

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

Examples:

- $\ell(r, y)=(r-y)^{2}$
$\Gamma(p)=\mathbb{E}_{y \sim p} y \quad$ (mean)
- $\ell(r, y)=|r-y|$ median
- $\ell(r, y)= \begin{cases}0 & r=y \\ 1 & \text { otherwise }\end{cases}$ mode
- $\ell(r, y)=? ?$

Background: information elicitation

What do you get when you minimize a loss?

$$
\begin{equation*}
\Gamma(p):=\underset{r \in \mathcal{R}}{\operatorname{argmin}} \underset{y \sim p}{\mathbb{E}} \ell(r, y) \tag{1}
\end{equation*}
$$

- $\Gamma: \Delta_{\mathcal{Y}} \rightarrow 2^{\mathcal{R}}$ is a property of the distribution p
- Γ is elicitable if there exists ℓ such that (1) holds

The variance is not elicitable

Proposition (Folklore)

There is no loss function that elicits the variance of p.

Information elicitation - the picture

The simplex $\Delta_{\mathcal{Y}}$ for $\mathcal{Y}=\{10,20,30\}$:

Information elicitation - the picture

- A property is a partition of the simplex.
- The level set of r is $\{p: \Gamma(p)=r\}$.

Information elicitation - the picture

- A property is a partition of the simplex.
- The level set of r is $\{p: \Gamma(p)=r\}$.

Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Key basic fact

Theorem

If a property is elicitable, then all of its level sets are convex sets.

Non-elicitable properties

Known: there is no loss function eliciting the variance. Suggestions?

Non-elicitable properties

Known: there is no loss function eliciting the variance. Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate. \Longrightarrow the elicitation complexity ${ }^{1}$ of the variance is 2 .
${ }^{1}$ e.g. Frongillo and Kash, 2015

Non-elicitable properties

Known: there is no loss function eliciting the variance.
Suggestions?

Indirect elicitation: elicit mean and second moment, then calculate.
\Longrightarrow the elicitation complexity ${ }^{1}$ of the variance is 2 .

Note: always possible to elicit entire distribution and calculate. \Longrightarrow elicitation complexity $\leq|\mathcal{Y}|-1$ for all properties.

Final case study: 2-norm

Consider $\Gamma(p)=\|p\|_{2}^{2}=\sum_{y} p_{y}^{2}$.

Fact: [Frongillo and Kash, 2015] The elicitation complexity of the 2-norm is $|\mathcal{Y}|-1$.

Paper 1: (im)possibilities

Multi-Observation Elicitation. COLT 2017.
Casalaina-Martin, Frongillo, Morgan, Waggoner.

Paper 1: (im)possibilities

Multi-Observation Elicitation. COLT 2017.
Casalaina-Martin, Frongillo, Morgan, Waggoner.

Goals:

- Propose multi-observation losses.
- Give upper bounds avoiding prior impossibilities.
- Develop theory of losses from algebraic geometry.
- Use it to prove lower bounds.

Example 1: Variance

Claim 1: Let

$$
f\left(y_{1}, y_{2}\right)=\frac{1}{2}\left(y_{1}-y_{2}\right)^{2}
$$

Then $\mathbb{E}_{y_{1}, y_{2} \sim p} f\left(y_{1}, y_{2}\right)=\operatorname{Var}(p)$.

Example 1: Variance

Claim 1: Let

$$
f\left(y_{1}, y_{2}\right)=\frac{1}{2}\left(y_{1}-y_{2}\right)^{2} .
$$

Then $\mathbb{E}_{y_{1}, y_{2} \sim p} f\left(y_{1}, y_{2}\right)=\operatorname{Var}(p)$.

Claim 2: The multi-observation loss function

$$
\ell\left(r, y_{1}, y_{2}\right)=\left(r-f\left(y_{1}, y_{2}\right)\right)^{2}
$$

elicits the variance of p.

Example 2: 2-norm

Consider $\Gamma(p)=\|p\|_{2}^{2}=\sum_{y} p_{y}^{2}$.

Example 2: 2-norm

Consider $\Gamma(p)=\|p\|_{2}^{2}=\sum_{y} p_{y}^{2}$.
Claim 3: Let

$$
f\left(y_{1}, y_{2}\right)=\mathbf{1}\left[y_{1}=y_{2}\right] .
$$

Then $\mathbb{E}_{y_{1}, y_{2} \sim p} f\left(y_{1}, y_{2}\right)=\|p\|_{2}^{2}$.

Example 2: 2-norm

Consider $\Gamma(p)=\|p\|_{2}^{2}=\sum_{y} p_{y}^{2}$.
Claim 3: Let

$$
f\left(y_{1}, y_{2}\right)=\mathbf{1}\left[y_{1}=y_{2}\right] .
$$

Then $\mathbb{E}_{y_{1}, y_{2} \sim p} f\left(y_{1}, y_{2}\right)=\|p\|_{2}^{2}$.

Claim 4: The multi-observation loss function

$$
\ell\left(r, y_{1}, y_{2}\right)=\left(r-f\left(y_{1}, y_{2}\right)\right)^{2}
$$

elicits the 2 -norm squared of p.

Wait a minute!

What about the following transformation?
Let $p^{\prime}=p \times p$ (distributions over i.i.d. pairs).
Then

$$
\underset{y_{1}, y_{2} \sim p}{\mathbb{E}} \ell\left(r, y_{1}, y_{2}\right)=\underset{\bar{y} \sim p^{\prime}}{\mathbb{E}} \ell(r, \bar{y}) .
$$

So can't we reduce multi-observation elicitation to standard elicitation?

No...

tetrahedron $=$ distributions on $\{0,1\} \times\{0,1\}$ $\operatorname{arc}=$ i.i.d. distributions

. . . but this can provide lower bounds

Proposition

The fourth-central moment is not elicitable with any ≤ 2 observation loss function.

Key geometric idea: variance example

Level sets of m-observation elicitable properties can be non-convex. . .
... but they must be projections from convex level sets in $\Delta_{\mathcal{Y}}^{m}$.

(c)

Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-m polynomial in p.

Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-m polynomial in p.

Example (variance): $\left\{p: \sum_{y} p_{y} y^{2}-\left(\sum_{y} p_{y} y\right)^{2}=\frac{200}{3}\right\}$
Example $\left(k\right.$-norm): $\left\{p: \sum_{y} p_{y}^{k}=0.168\right\}$.

Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, extremely roughly)
A linear function can't vanish on a circle.

Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the polynomial g vanishes on that level set, and some other conditions hold, then g has degree at least m.

Lower bound on number of observations

Theorem

If Γ is a m-observation-elicitable and "nice", then its level sets are all sets of zeros of some degree-at-most-m polynomial in p.

Theorem (Real Nullstellensatz, very roughly)

If a level set consists of zeros of a degree-m polynomial, and the polynomial g vanishes on that level set, and some other conditions hold, then g has degree at least m.

Corollary

To elicit the k norm requires a k-observation loss.

Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- observations: how many observations used in the loss function?

Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- observations: how many observations used in the loss function?

Nontrivial example: nth central moment is elicitable with \sqrt{n} parameters and \sqrt{n} observations.
Best we can do separately: n and n.

Summary and elicitation complexity

Two measures of complexity:

- dimensionality: how many parameters need to be elicited?
- observations: how many observations used in the loss function?

Theorem (Key example)

The 2-norm requires $|\mathcal{Y}|-1$ parameters if using traditional loss functions, but just one parameter using the multi-observation loss

$$
\ell\left(r, y_{1}, y_{2}\right)=\left(r-\mathbf{1}\left[y_{1}=y_{2}\right]\right)^{2}
$$

Paper 2: generalized regression

Multi-Observation Regression. AISTATS 2019.
Frongillo, Mehta, Morgan, Waggoner.

Paper 2: generalized regression

Multi-Observation Regression. AISTATS 2019.
Frongillo, Mehta, Morgan, Waggoner.

Setup:

- Unknown distribution on (x, y) pairs
- Draw set of i.i.d. samples
- Goal: learn hypothesis $f: \mathcal{X} \rightarrow \mathcal{R} \quad$ map x to "summary" of y
- Example: map x to expected y

Dominant paradigm: ERM

Example: least squares,

$$
\underset{f}{\operatorname{argmin}} \sum_{(x, y)}(f(x)-y)^{2}
$$

Dominant paradigm: ERM

More generally,

$$
\underset{f}{\operatorname{argmin}} \sum_{x, y} \ell(f(x), y)
$$

Problem: non-elicitable properties!

Given x, we might want to predict. . .

- variance of y
- upper confidence bound on y
- risk measures
- 2-norm of y
economics, biology, social science robust design (engineering) finance economics, biology

Problem: non-elicitable properties!

Given x, we might want to predict. . .

- variance of y
- upper confidence bound on y
- risk measures
- 2-norm of y
economics, biology, social science robust design (engineering) finance economics, biology

Prior paradigm does not directly apply!
Default solution: Fit a separate model for each parameter.

Problem: non-elicitable properties!

Given x, we might want to predict. . .

- variance of y
- upper confidence bound on y
- risk measures
- 2-norm of y
economics, biology, social science robust design (engineering) finance economics, biology

Prior paradigm does not directly apply!
Default solution: Fit a separate model for each parameter.
Problems: may need many parameters; VC-dimension issues...

Potential VC issues

Solution (?): Multi-observation losses

Proposal: Just fit a multi-observation loss!

$$
\min _{f} \sum_{x, y} \ell\left(f(x), y_{1}, y_{2}\right)
$$

Problem?

Solution (?): Multi-observation losses

Proposal: Just fit a multi-observation loss!

$$
\min _{f} \sum_{x, y} \ell\left(f(x), y_{1}, y_{2}\right)
$$

Problem?
We only have (x, y) samples, not $\left(x, y_{1}, y_{2}\right)$!

Fitting multi-observation losses

Clump data into metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, then do empirical risk minimization:

$$
\min _{f} \sum_{\text {metasamples }} \ell\left(f(x), y_{1}, \ldots, y_{m}\right)
$$

Fitting multi-observation losses

Clump data into metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, then do empirical risk minimization:

$$
\min _{f} \sum_{\text {metasamples }} \ell\left(f(x), y_{1}, \ldots, y_{m}\right) .
$$

Fitting multi-observation losses

Clump data into metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, then do empirical risk minimization:

$$
\min _{f} \sum_{\text {metasamples }} \ell\left(f(x), y_{1}, \ldots, y_{m}\right) .
$$

Theory

Lipschitz assumption: $\operatorname{Pr}[y \mid x]$ changes slowly in x.
Unbiased algorithm:
1 Sample x_{1}, \ldots, x_{n} i.i.d.
2 Draw "enough" fresh (x, y) pairs
3 Use maximum matching to assign $y s$ to nearby original x_{i}.

Theory

Lipschitz assumption: $\operatorname{Pr}[y \mid x]$ changes slowly in x.
Unbiased algorithm:
1 Sample x_{1}, \ldots, x_{n} i.i.d.
ignore their y 's
2 Draw "enough" fresh (x, y) pairs
3 Use maximum matching to assign $y s$ to nearby original x_{i}.

Theorem (Informal)

With probability $1-\delta$, for $x \in[0,1]$, we draw $\tilde{O}(n)$ samples and $\operatorname{Risk}($ alg $) \leq \operatorname{Risk}(o p t)+O($ Rademacher complexity $)+O\left(\frac{1}{\sqrt{n}}\right)$.

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

2 "Corrupted samples".

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

2 "Corrupted samples".

- y_{j} was sampled from a distribution close to $\operatorname{Pr}[y \mid x]$.

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

2 "Corrupted samples".

- y_{j} was sampled from a distribution close to $\operatorname{Pr}[y \mid x]$.
- View that distribution as a mixture of $\operatorname{Pr}[y \mid x]$ and arbitrary.

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

2 "Corrupted samples".

- y_{j} was sampled from a distribution close to $\operatorname{Pr}[y \mid x]$.
- View that distribution as a mixture of $\operatorname{Pr}[y \mid x]$ and arbitrary.
- With good probability, all y_{j} in metasample came from $\operatorname{Pr}[y \mid x]$.

Some proof ideas

1 With high probability, for all but $O(\sqrt{n})$ metasamples $\left(x, y_{1}, \ldots, y_{m}\right)$, all y_{j} were sampled "nearby". holds for arbitrary distributions

2 "Corrupted samples".

- y_{j} was sampled from a distribution close to $\operatorname{Pr}[y \mid x]$.
- View that distribution as a mixture of $\operatorname{Pr}[y \mid x]$ and arbitrary.
- With good probability, all y_{j} in metasample came from $\operatorname{Pr}[y \mid x]$.
- Only lose $O(\sqrt{n})$ metasamples to bad mixtures.

Simulations

Setup:

- Draw $x \sim U[0,1]$
- Draw $y=g(x)+N(0,1)$
- Goal: fit $\operatorname{Var}(y \mid x)$

Simulations

Setup:

- Draw $x \sim U[0,1]$
- Draw $y=g(x)+N(0,1)$
- Goal: fit $\operatorname{Var}(y \mid x)$

Algorithms:

- "2mom linear" - fit linear functions to moments
- "2mom quad" - fit quadratics to moments
- "improved" - our theoretically-rigorous algorithm
- our other clustering algorithms

Observations from simulations

Difficult task:

As expected, default approaches perform very poorly.

Observations from simulations

Easy task:

 Multi-observation approach can still be a better choice.

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$
- Elicitation complexity: number of parameters and/or observations needed

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed
- Algorithms for metasamples and multi-obs. ERM

Summary

- Studied multi-observation losses $\ell\left(x, y_{1}, \ldots, y_{m}\right)$
- Elicitation complexity: number of parameters and/or observations needed
- Multiple observations can lower number of parameters needed
- Techniques for lower-bounding number of observations needed
- Algorithms for metasamples and multi-obs. ERM
- Examples with huge improvement in sample complexity

Future directions (1/2)

- Elicitation complexity: more upper and lower bounds central moments, multiple parameters \& observations

Future directions (1/2)

- Elicitation complexity: more upper and lower bounds central moments, multiple parameters \& observations
- Algorithms (or assumptions) in high dimensions information-theoretic barriers in general

Future directions $(1 / 2)$

- Elicitation complexity: more upper and lower bounds central moments, multiple parameters \& observations
- Algorithms (or assumptions) in high dimensions information-theoretic barriers in general
- Partner with practitioners \rightarrow useful applications

Future directions (2/2)

- Multi-Observation Elicitation, COLT 2017.
- Multi-Observation Regression, AISTATS 2019.
- . . . next in the franchise?

Future directions $(2 / 2)$

- Multi-Observation Elicitation, COLT 2017.
- Multi-Observation Regression, AISTATS 2019.
- . . . next in the franchise?

Multi-Observation: Apocalypse

Abstract
No algorithm could have predicted this...

