Contracts with Information Acquisition, via Scoring Rules

Maneesha Papireddygari Bo Waggoner

University of Colorado, Boulder

TheoryFest June 2022

principal

principal

agent action outcome

Zermeño (2012); Boutilier (2012); Oesterheld and Conitzer (2020)

Model

- **2** Reducing to design of scoring rules
- Special cases
- Main result

1. Model

Revisit standard hidden action model Recall information acquisition model Give our model

Hidden Action - Model

- **1** Principal offers a **contract** $t : \Omega \to \mathbb{R}$
- **2** Agent chooses an action a, incurs cost c_a
- **3** Outcome $\omega \sim p_a$ revealed, payment $t(\omega)$.

Hidden Action - Model

- **1** Principal offers a **contract** $t : \Omega \to \mathbb{R}$
- **2** Agent chooses an action a, incurs cost c_a
- **3** Outcome $\omega \sim p_a$ revealed, payment $t(\omega)$.

Require **limited liability:** payment ≥ 0 always.

Minimimum payment problem: incentivize a as cheaply as possible agent maxes \mathbb{E} utility

Information acquisition - model¹

¹Related work: Li et al. 2022; Chen and Yu 2021; discussed later.

Information acquisition - model¹

- **1** Principal offers a scoring rule $s : \Delta_{\Omega} \times \Omega \to \mathbb{R}$
- 2 Agent chooses whether to acquire signal for cost κ
- 3 Agent reports a prediction p
- 4 Outcome ω is revealed, pay $s(p, \omega)$.

¹Related work: Li et al. 2022; Chen and Yu 2021; discussed later.

Information acquisition - model¹

- **1** Principal offers a scoring rule $s : \Delta_{\Omega} \times \Omega \to \mathbb{R}$
- 2 Agent chooses whether to acquire signal for cost κ
- 3 Agent reports a prediction p
- 4 Outcome ω is revealed, pay $s(p, \omega)$.

Observe: prediction p yields contract $t(\omega) = s(p, \omega)$.

¹Related work: Li et al. 2022; Chen and Yu 2021; discussed later.

Information acquisition - model¹ (take 2)

- **1** Principal offers a scoring rule $s : \Delta_{\Omega} \times \Omega \to \mathbb{R}$ **Principal offers a menu** T of contracts
- 2 Agent chooses whether to acquire signal for cost κ
- 3 Agent reports a prediction p
 Agent selects a contract t ∈ T
 4 Outcome ω is revealed, pay s(p,ω).
 Outcome ω is revealed, pay t(ω)

Observe: prediction p yields **contract** $t(\omega) = s(p, \omega)$.

¹Related work: Li et al. 2022; Chen and Yu 2021; discussed later.

Our model

Contracts with Information Acquisition:

- **1** Principal offers a menu T of contracts
- 2 Agent chooses whether to acquire signal S
- 3 Agent selects a contract $t \in T$
- 4 Agent selects an action a
- **5** Outcome $\omega \sim p_{a,S}$ is revealed, pay $t(\omega)$

Our model

Contracts with Information Acquisition:

- **1** Principal offers a menu T of contracts
- 2 Agent chooses whether to acquire signal S
- 3 Agent selects a contract $t \in T$
- 4 Agent selects an action a
- **5** Outcome $\omega \sim p_{a,S}$ is revealed, pay $t(\omega)$

Minimum payment problem:

given a **plan**, design T so the agent follows it

 $\textit{cost} \kappa$

cost c_a

Our model

Contracts with Information Acquisition:

- **1** Principal offers a menu T of contracts
- 2 Agent chooses whether to acquire signal S
- 3 Agent selects a contract $t \in T$
- 4 Agent selects an action a
- **5** Outcome $\omega \sim p_{a,S}$ is revealed, pay $t(\omega)$

Minimum payment problem:

given a **plan**, design T so the agent follows it i.e. minimize expected payment subject to limited liability, IC, IR.

cost κ

cost c_a

2. Reducing to design of scoring rules

Key characterization

Proposition

WLOG, the menu T is a proper scoring rule $s(p,\omega)$ and the agent reports their posterior belief p in Step 3.
Key characterization

Proposition

WLOG, the menu T is a proper scoring rule $s(p,\omega)$ and the agent reports their posterior belief p in Step 3.

Proposition (Restated)

WLOG, the menu T is the set of subtangents of a subdifferentiable convex $G : \Delta_{\Omega} \to \mathbb{R}$, with

$$G(p) = \max_{t \in T} \bar{t}(p).$$

 $\Pr[\boldsymbol{\omega}=\text{good}]$

 $\Pr[\omega = \text{good}]$

 $\Pr[\boldsymbol{\omega}=\text{good}]$

 $\Pr[\boldsymbol{\omega}=\text{good}]$

3. Special cases

Recovering information acquisition

- **1** Principal offers menu T
- 2 Agent chooses whether to acquire signal S
- 3 Agent selects contract $t \in T$
- 4 (Agent does not take action)
- **5** Outcome $\omega \sim p_S$ is revealed, pay $t(\omega)$

Recovering information acquisition

- **1** Principal offers menu T
- **2** Agent chooses whether to acquire signal S
- 3 Agent selects contract $t \in T$
- 4 (Agent does not take action)
- **5** Outcome $\omega \sim p_S$ is revealed, pay $t(\omega)$

Known: under different constraints, "V" shape is optimal [Li, Hartline, Shan, Wu 2020-2022; Chen and Yu 2021].

Information acquisition - results

Theorem

An optimal solution to the IA problem is G^* , where:

1 Define
$$H(p) = \max_{\omega} \frac{p(\omega)}{p_0(\omega)}$$
. $p_0 = \text{prior}$
2 Define $G^*(p) = \frac{\kappa}{\mathbb{E}H(p_S)-1} H(p)$. $\kappa = \text{cost of signal}$

Information acquisition - results

Theorem

An optimal solution to the IA problem is G^* , where:

1 Define
$$H(p) = \max_{\omega} \frac{p(\omega)}{p_0(\omega)}$$
. $p_0 = \text{prior}$
2 Define $G^*(p) = \frac{\kappa}{\mathbb{E}H(p_S)-1} H(p)$. $\kappa = \text{cost of signal}$

Observation: G^* is a *pointed polyhedral cone* with its point at p_0 .

Information acquisition - results

Theorem

An optimal solution to the IA problem is G^* , where:

1 Define
$$H(p) = \max_{\omega} \frac{p(\omega)}{p_0(\omega)}$$
. $p_0 = \text{prior}$
2 Define $G^*(p) = \frac{\kappa}{\mathbb{E} H(p_S) - 1} H(p)$. $\kappa = \text{cost of signal}$

Observation: G^* is a *pointed polyhedral cone* with its point at p_0 . **Observation:** H contains all "indicator" contracts of the form

$$t_{\omega^*}(\omega) = egin{cases} rac{1}{p_0(\omega^*)} & \omega = \omega^* \\ 0 & ext{otherwise} \end{cases}$$

Proof idea

Lemma: *H* is feasible (respectively, optimal) on the right \iff $G = \frac{\kappa}{\mathbb{E}H-1}H$ is feasible (respectively, optimal) on the left.

 $\begin{array}{ll} \min_{G} & \mathbb{E} \, G(p_S) \\ \text{s.t.} \\ & \mathbb{E} \, G(p_S) - \kappa \geq G(p_0) \\ \text{limited liability} \end{array}$

 $\max_{H} \mathbb{E} H(p_{S})$ s.t. $H(p_{0}) \leq 1$ limited liability

Proof idea

Lemma: *H* is feasible (respectively, optimal) on the right \iff $G = \frac{\kappa}{\mathbb{E}H-1}H$ is feasible (respectively, optimal) on the left.

 $\begin{array}{ll} \min_{G} & \mathbb{E} \, G(p_S) & \max_{H} & \mathbb{E} \, H(p_S) \\ \text{s.t.} & \text{s.t.} & \\ \mathbb{E} \, G(p_S) - \kappa \geq G(p_0) & H(p_0) \leq 1 \\ \text{limited liability} & \text{limited liability} \end{array}$

Lemma:
$$H(p) = \max_{\omega} rac{p(\omega)}{p_0(\omega)}$$
 is optimal on the right.

Information acquisition - summary

- Solve general multidimensional IA s.t. LL
- $G^* = \text{polyhedral pointed cone}$

as in prior work

Closed-form solution

Recovering the hidden action model

- **1** Principal offers menu T
- **2** (there is no signal)
- 3 Agent selects contract $t \in T$
- 4 Agent selects action a
- **5** Outcome $\omega \sim p_a$ is revealed, pay $t(\omega)$

Hidden actions - summary

- Study the convexified cost curve
- Geometric characterization of elicitable actions, optimal contracts
- But, no computational advantage over standard LP formulation
- Still, useful observations for our general model

4. Main result

Main-ish result

Theorem

For Contracts with Information Acquisition, there is a polynomial-size linear program for computing an optimal menu for a given plan.

Parameters: signal distribution q, action set A, posteriors $\{p_{a,S}\}$, plan $f: S \to A$.

Main-ish result

Theorem

For Contracts with Information Acquisition, there is a polynomial-size linear program for computing an optimal menu for a given plan.

Parameters: signal distribution q, action set A, posteriors $\{p_{a,S}\}$, plan $f: S \to A$.

Key idea: G is WLOG piecewise linear with a small number of contracts.

Main-ish result

Theorem

For Contracts with Information Acquisition, there is a polynomial-size linear program for computing an optimal menu for a given plan.

Parameters: signal distribution q, action set A, posteriors $\{p_{a,S}\}$, plan $f: S \to A$.

Key idea: G is WLOG piecewise linear with a small number of contracts.

Extensions: minimizing LP size; necessary conditions for feasibility of a plan.

Conclusion

Contributions:

- Model and LP for Contracts with Information Acquisition (IA)
- Scoring rule approach to contracts
- Closed-form sol'n for IA under limited liability

Future work:

- Robustness
- Multiple signals

see Oesterheld+Conitzer 2021 already unknown for IA

• Efficiently optimize principal utility

Conclusion

Contributions:

- Model and LP for Contracts with Information Acquisition (IA)
- Scoring rule approach to contracts
- Closed-form sol'n for IA under limited liability

Future work:

- Robustness
- Multiple signals

see Oesterheld+Conitzer 2021 already unknown for IA

Efficiently optimize principal utility

Thanks!