An Axiomatic Characterization of CFMMs and Equivalence to Prediction Markets

Maneesha Papireddygari Rafael Frongillo

Bo Waggoner

University of Colorado, Boulder
a16z
March 16, 2023

Automated Market Makers

Time

AMMs - motivation and summary

- Recent usefulness on blockchains Uniswap, etc
- Historical cornerstone of prediction markets (including on blockchains)

AMMs - motivation and summary

- Recent usefulness on blockchains Uniswap, etc
- Historical cornerstone of prediction markets (including on blockchains)

Takeaways from this talk:

- Direct reductions between prediction markets and CFMMs
- Designing for functionality
$=$ designing for elicitation

Designing for functionality
$=$ designing for elicitation

Outline

1 Constant-Function Market Makers (CFMMs)

- Market-making axioms

2 Prediction markets

- Cost-function designs
- Convex analysis for traders

3 Main results

- Equivalence of the two market makers
- Extension to liquidity levels

Constant-Function Market Makers (CFMMs)

First: automated market makers, in general

- n assets

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades
- trader arrives, selects trade; repeat

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades
- trader arrives, selects trade; repeat
- initial reserves $\mathrm{q}_{0} \in \mathbb{R}^{n}$

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades
- trader arrives, selects trade; repeat
- initial reserves $q_{0} \in \mathbb{R}^{n}$
- current reserves $\mathbf{q}=\mathbf{q}_{0}+\mathbf{r}+\cdots$

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades
- trader arrives, selects trade; repeat
- initial reserves $q_{0} \in \mathbb{R}^{n}$
- current reserves $\mathbf{q}=\mathbf{q}_{0}+\mathbf{r}+\cdots$

First: automated market makers, in general

- n assets
- trade: a vector $\mathbf{r} \in \mathbb{R}^{n}$
- pricing rule: a function: history \rightarrow set of valid trades
- trader arrives, selects trade; repeat
- initial reserves $q_{0} \in \mathbb{R}^{n}$
- current reserves $\mathbf{q}=\mathbf{q}_{0}+\mathbf{r}+\cdots$

Question: what are good pricing rules?

Constant-function market makers (CFMMs)

CFMM with potential function φ :
\mathbf{r} is valid if $\varphi(\mathbf{q}+\mathbf{r})=\varphi(\mathbf{q})$.
$r=$ trade,

Constant-function market makers (CFMMs)

CFMM with potential function φ :
$r=$ trade,
\mathbf{r} is valid if $\varphi(\mathbf{q}+\mathbf{r})=\varphi(\mathbf{q})$.
$q=$ reserves

Primary example: Constant-product, e.g. Uniswap v2:

$$
\varphi(\mathbf{q})=\left(\prod_{i=1}^{n} \mathbf{q}_{i}\right)^{1 / n}
$$

e.g. with two assets, $\varphi\left(q_{1}, q_{2}\right)=\sqrt{q_{1} q_{2}}$.

Characterization of CFMMs

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:
it is a CFMM for a concave, increasing φ.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
it is a CFMM for a concave, increasing φ.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
- No dominated trades,
it is a CFMM for a concave, increasing φ.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
- No dominated trades,
- Liquidation,
it is a CFMM for a concave, increasing φ.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
- No dominated trades,
- Liquidation,
- and demand responsiveness, it is a CFMM for a concave, increasing φ.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
- No dominated trades,
- Liquidation,
- and demand responsiveness, it is a CFMM for a concave, increasing φ.

Extension to multiple level sets: quasiconcave.

Characterization of CFMMs

Proposition: If and only if an automated market satisfies:

- Path independence,
- No dominated trades,
- Liquidation,
- and demand responsiveness, it is a CFMM for a concave, increasing φ.

Extension to multiple level sets: quasiconcave.
Angeris and Chitra (2020), Angeris et al. (2022), Bichuch and Feinstein (2022): axioms
 about CFMMs; here, deriving CFMM structure.

Automated prediction markets: crash course

Automated prediction markets

- Event to be predicted: n outcomes

Automated prediction markets

- Event to be predicted: n outcomes mutually exclusive, exhaustive
- Security i pays $\$ 1$ if outcome i, pays $\$ 0$ otherwise

Automated prediction markets

- Event to be predicted: n outcomes mutually exclusive, exhaustive
- Security i pays $\$ 1$ if outcome i, pays $\$ 0$ otherwise
- Automated market with $n+1$ assets
n securities and cash

Automated prediction markets

- Event to be predicted: n outcomes mutually exclusive, exhaustive
- Security i pays $\$ 1$ if outcome i, pays $\$ 0$ otherwise
- Automated market with $n+1$ assets
n securities and cash

Automated prediction markets

- Event to be predicted: n outcomes mutually exclusive, exhaustive
- Security i pays $\$ 1$ if outcome i, pays $\$ 0$ otherwise
- Automated market with $n+1$ assets
n securities and cash

Question: how to elicit market belief?
a priori: different design goal than facilitating trade

Cost function prediction markets

Prediction market with cost function C : accept any $\mathbf{r} \in \mathbb{R}^{n}$ and pay $C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$ cash.

[^0]${ }^{2}$ Waggoner and Frongillo 2018

Cost function prediction markets

Prediction market with cost function C : accept any $\mathbf{r} \in \mathbb{R}^{n}$ and pay $C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$ cash.

When C is convex, ones-invariant:

- Equivalent ${ }^{1}$ to scoring-rule markets of Hanson (2003). proper scoring rule: trading menu eliciting truthful predictions

[^1]
Cost function prediction markets

Prediction market with cost function C :

 accept any $\mathbf{r} \in \mathbb{R}^{n}$ and pay $C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$ cash.When C is convex, ones-invariant:

- Equivalent ${ }^{1}$ to scoring-rule markets of Hanson (2003). proper scoring rule: trading menu eliciting truthful predictions
- Characterize truthful, path-independent markets ${ }^{2}$.

[^2]
Cost functions, visually

Cost functions, visually

Market design through convex analysis

Scoring rule:

Main result 1: Equivalence

Equivalence 3

Theorem: There are reductions between the space of:

- Cost function markets with convex, ones-invariant C, and
- CFMMs with concave, increasing φ
such that the automated markets implemented are the same.*

[^3]
Equivalence ${ }^{3}$

Theorem: There are reductions between the space of:

- Cost function markets with convex, ones-invariant C, and
- CFMMs with concave, increasing φ
such that the automated markets implemented are the same.*
*Needs explanation:
- Prediction markets assume cash
- Prediction market assets are specizialized

[^4]

Recall: $n+1$ assets (security $1, \ldots$, security n, cash).

(\Longrightarrow)

Recall: $n+1$ assets (security $1, \ldots$, security n, cash).
Observe: everyone values bundles $(1, \ldots, 1,0)$ and $(0, \ldots, 0,1)$ the same.

Recall: $n+1$ assets (security $1, \ldots$, security n, cash).
Observe: everyone values bundles $(1, \ldots, 1,0)$ and $(0, \ldots, 0,1)$ the same.

Cashless prediction market: replace any cash payment with units of the "grand bundle" (one of each asset).

- For any $\mathbf{r} \in \mathbb{R}^{n}$, accept trade $\mathbf{r}-\alpha \mathbb{1}$ where $\alpha=C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$.

Recall: $n+1$ assets (security $1, \ldots$, security n, cash).
Observe: everyone values bundles $(1, \ldots, 1,0)$ and $(0, \ldots, 0,1)$ the same.

Cashless prediction market: replace any cash payment with units of the "grand bundle" (one of each asset).

- For any $\mathbf{r} \in \mathbb{R}^{n}$, accept trade $\mathbf{r}-\alpha \mathbb{1}$ where $\alpha=C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$.

Fact: the cashless prediction market is already a CFMM.
defined for n arbitrary assets

Recall: $n+1$ assets (security $1, \ldots$, security n, cash).
Observe: everyone values bundles $(1, \ldots, 1,0)$ and $(0, \ldots, 0,1)$ the same.

Cashless prediction market: replace any cash payment with units of the "grand bundle" (one of each asset).

- For any $\mathbf{r} \in \mathbb{R}^{n}$, accept trade $\mathbf{r}-\alpha \mathbb{1}$ where $\alpha=C(\mathbf{q}+\mathbf{r})-C(\mathbf{q})$.

Fact: the cashless prediction market is already a CFMM. defined for n arbitrary assets
Proof: Ones-invariance implies $C(\mathbf{q}+\mathbf{r}-\alpha \mathbb{1})=C(\mathbf{q})$.
And $\varphi(\mathbf{q})=-C(-\mathbf{q})$ is concave, increasing.

Theorem: Given a concave, increasing φ and initial reserves \mathbf{q}_{0}, the function

$$
C(\mathbf{q}):=\inf \left\{c \in \mathbb{R} \mid \varphi(c \mathbb{1}-\mathbf{q}) \geq \varphi\left(\mathbf{q}_{0}\right)\right\}
$$

is convex and ones-invariant. Further, the set of trades offered is equivalent up to cashlessness.

(\Longleftarrow)

Theorem: Given a concave, increasing φ and initial reserves q_{0}, the function

$$
C(\mathbf{q}):=\inf \left\{c \in \mathbb{R} \mid \varphi(c \mathbb{1}-\mathbf{q}) \geq \varphi\left(\mathbf{q}_{0}\right)\right\}
$$

is convex and ones-invariant. Further, the set of trades offered is equivalent up to cashlessness.

(\Longleftarrow)

Theorem: Given a concave, increasing φ and initial reserves q_{0}, the function

$$
C(\mathbf{q}):=\inf \left\{c \in \mathbb{R} \mid \varphi(c \mathbb{1}-\mathbf{q}) \geq \varphi\left(\mathbf{q}_{0}\right)\right\}
$$

is convex and ones-invariant. Further, the set of trades offered is equivalent up to cashlessness.

Takeaways from equivalence

1. Constructions

Takeaways from equivalence

1. Constructions

prediction markets \rightarrow CFMMs? (later)

Takeaways from equivalence

1. Constructions

prediction markets \rightarrow CFMMs? (later)
CFMMs \rightarrow prediction markets?

Takeaways from equivalence

1. Constructions

prediction markets \rightarrow CFMMs? (later)
CFMMs \rightarrow prediction markets?
constant-product: $\sqrt{q_{1} q_{2}}=b$.

Takeaways from equivalence

1. Constructions

prediction markets \rightarrow CFMMs? (later)
CFMMs \rightarrow prediction markets?
constant-product: $\sqrt{q_{1} q_{2}}=b$.

$$
C\left(q_{1}, q_{2}\right)=\frac{1}{2}\left(q_{1}+q_{2}+\sqrt{4 b^{2}+\left(q_{1}-q_{2}\right)^{2}}\right) .
$$

Takeaways from equivalence

1. Constructions

Logarithmic utility and negative exponential utility are two widely used utility functions that both belong to the HARA utility class. The cost function corresponding to the logarithmic utility function, $u(m)=$ $\log (b+m)$ with $b>0$, is the implicit function defined by equation (13). If the event only has two outcomes and the market maker's subjective probability estimate is uniform, the explicit cost function for the market maker is

$$
\begin{equation*}
C(\vec{q})=-b+\frac{1}{2}\left(q_{1}+q_{2}\right)+\frac{1}{2} \sqrt{4 b^{2}+\left(q_{1}-q_{2}\right)^{2}} \tag{14}
\end{equation*}
$$

For the negative exponential utility function, $u(m)=$ $-e^{-\alpha m}$ with $\alpha>0$, the market maker's cost function is

$$
\begin{equation*}
C(\vec{q})=\frac{1}{\alpha} \log \left(\sum_{j} \pi_{j} e^{\alpha q_{j}}\right) \tag{15}
\end{equation*}
$$

We omit the price functions here, which can be easily obtained by differentiation.

5.3 Cost Functions and Market Scoring Rules

which is equivalent to the cost function (15) derived for negative exponential utility market maker by setting $\vec{\pi}$ to be uniform and with some variable substitution, verifying the stated equivalence result in Corollary 4. The equivalent cost function for a MSR market maker with a quadratic scoring rule (2) is

$$
\begin{equation*}
C(\vec{q})=\frac{\sum_{j} q_{j}}{N}+\frac{\sum_{j} q_{j}^{2}}{4 b}-\frac{\left(\sum_{j} q_{j}\right)^{2}}{4 N b}-\frac{b}{N} \tag{18}
\end{equation*}
$$

Price functions can be obtained by differentiation.

Takeaways from equivalence

1. Constructions

prediction markets \rightarrow CFMMs? (later)
CFMMs \rightarrow prediction markets?
constant-product: $\sqrt{q_{1} q_{2}}=b$.

$$
C\left(q_{1}, q_{2}\right)=\frac{1}{2}\left(q_{1}+q_{2}+\sqrt{4 b^{2}+\left(q_{1}-q_{2}\right)^{2}}\right) .
$$

scoring rule $S(p, i)=-b \sqrt{\frac{p_{i}}{p_{j}}}$

Takeaways from equivalence

1. Constructions
2. Concepts

Takeaways from equivalence

1. Constructions

2. Concepts
design for elicitation \Longleftrightarrow design to facilitate trade
axioms translate across the reductions

Takeaways from equivalence

1. Constructions

2. Concepts
design for elicitation \Longleftrightarrow design to facilitate trade
axioms translate across the reductions
CFMMs elicit ratios of valuations
e.g. $B T C: E T H \approx 10: 1$

Main result 2: Liquidity levels

Liquidity levels

Our reduction: prediction market \rightarrow CFMM

Liquidity levels

Our reduction: prediction market \rightarrow CFMM

Liquidity levels

Our reduction: prediction market \rightarrow CFMM

Liquidity levels - fixed

Theorem: Let C be convex and ones-invariant; then
$\varphi(\mathbf{q}):=\alpha$ such that $\alpha C(\mathbf{q} / \alpha)=0$
is concave, increasing, and 1-homogeneous*.

Liquidity levels - fixed

Theorem: Let C be convex and ones-invariant; then
$\varphi(\mathbf{q}):=\alpha$ such that $\alpha C(\mathbf{q} / \alpha)=0$
is concave, increasing, and 1-homogeneous*.
*Trades and exchange rates do not change if all quantities are multiplied by $c>0$.

Liquidity levels - fixed

Theorem: Let C be convex and ones-invariant; then
$\varphi(\mathbf{q}):=\alpha$ such that $\alpha C(\mathbf{q} / \alpha)=0$ is concave, increasing, and 1-homogeneous*.
*Trades and exchange rates do not change if all quantities are multiplied by $c>0$.

Theorem: The converse holds.

Implicit LMSR

Most popular cost function ("LMSR"): $C(\mathbf{q})=\log \left(\sum_{i} e^{q_{i}}\right)$.

Implicit LMSR

Most popular cost function ("LMSR"): $C(\mathbf{q})=\log \left(\sum_{i} e^{q_{i}}\right)$.

CFMM: $\varphi(\mathbf{q})=\alpha$ such that $\sum_{i} e^{q_{i} / \alpha}=1$. pictured on previous slide

Implicit LMSR

Most popular cost function ("LMSR"): $C(\mathbf{q})=\log \left(\sum_{i} e^{q_{i}}\right)$.

CFMM: $\varphi(\mathbf{q})=\alpha$ such that $\sum_{i} e^{q_{i} / \alpha}=1$. pictured on previous slide

- No closed form solution!

Implicit LMSR

Most popular cost function ("LMSR"):
$C(\mathbf{q})=\log \left(\sum_{i} e^{q_{i}}\right)$.
CFMM: $\varphi(\mathbf{q})=\alpha$ such that $\sum_{i} e^{q_{i} / \alpha}=1$. pictured on previous slide

- No closed form solution!
- But: given $\alpha, q_{1}, \ldots, q_{n-1}$, closed form for q_{n}

Implicit LMSR

Most popular cost function ("LMSR"):
$C(\mathbf{q})=\log \left(\sum_{i} e^{q_{i}}\right)$.
CFMM: $\varphi(\mathbf{q})=\alpha$ such that $\sum_{i} e^{q_{i} / \alpha}=1$. pictured on previous slide

- No closed form solution!
- But: given $\alpha, q_{1}, \ldots, q_{n-1}$, closed form for q_{n}
- And: $C(\mathbf{q} / \alpha)=0$ can be checked in closed form

Open directions

Open directions

- Adaptive liquidity via transaction fees
- Connections with prediction markets:
- Online learning
- Assets with negative values or predefined relationships
- Combinatorial markets?
- "Arbitrage" reduction

Some prediction market references:

- Abernethy, Chen, Wortman Vaughan (2013, TEAC)
- Chen, Pennock (2007, UAI)
- Abernethy, Frongillo, Li, Wortman Vaughan (2014, EC)
- Frongillo, Waggoner (2018, ITCS)

Open directions

- Adaptive liquidity via transaction fees
- Connections with prediction markets:
- Online learning
- Assets with negative values or predefined relationships
- Combinatorial markets?
- "Arbitrage" reduction

Some prediction market references:

- Abernethy, Chen, Wortman Vaughan (2013, TEAC)
- Chen, Pennock (2007, UAI)
- Abernethy, Frongillo, Li, Wortman Vaughan (2014, EC)
- Frongillo, Waggoner (2018, ITCS)

Thanks!

[^0]: ${ }^{1}$ Chen and Pennock (2007); Abernethy, Chen, Wortman Vaughan (2013)

[^1]: ${ }^{1}$ Chen and Pennock (2007); Abernethy, Chen, Wortman Vaughan (2013)
 ${ }^{2}$ Waggoner and Frongillo 2018

[^2]: ${ }^{1}$ Chen and Pennock (2007); Abernethy, Chen, Wortman Vaughan (2013)
 ${ }^{2}$ Waggoner and Frongillo 2018

[^3]: ${ }^{3}$ References/acknowledgements: Dave Pennock (discussions); financial risk measure literature (Fölmer and Schied 2008, 2015).

[^4]: ${ }^{3}$ References/acknowledgements: Dave Pennock (discussions); financial risk measure literature (Fölmer and Schied 2008, 2015).

