On Proper Losses for Evaluating Discrete Generative Models

Bo Waggoner

U. Colorado

DIMACS October 19, 2023

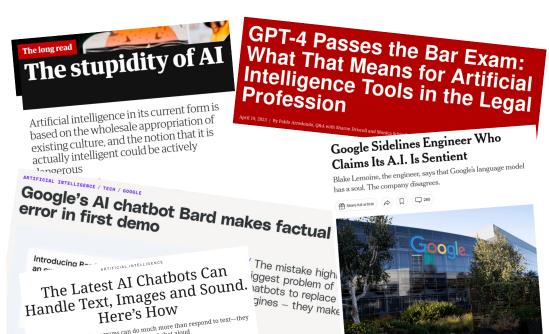
This talk:

- **1** Motivation: importance of evaluation
- **2 Research:** proper losses for generative models
- **Future:** types of tasks

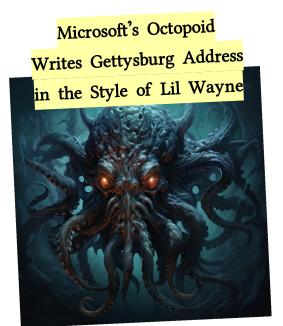
1. Motivation

Q: How good are LLMs?

Q: How good are LLMs?



All image credits: Midjourney



Octopoids to Make Schoolteachers Obsolete

As engineering?

As engineering?

OpenAI Bridge Supports Elephant Herd

As engineering?

An evaluation crisis

Problems:

- ML research incentives: new and shiny achievements
- Industry incentives: . . .

- ML research incentives: new and shiny achievements
- Industry incentives: ...

Benefits of evaluation research

Rigorous understanding of strengths and weaknesses

not hope

- ML research incentives: new and shiny achievements
- Industry incentives: ...

Benefits of evaluation research

• Rigorous understanding of strengths and weaknesses

... leading to fundamental progress

- ML research incentives: new and shiny achievements
- Industry incentives: ...

Benefits of evaluation research

- Rigorous understanding of strengths and weaknesses
- ... leading to fundamental progress
- Improved training methods

not hope

- ML research incentives: new and shiny achievements
- Industry incentives: ...

Benefits of evaluation research

- Rigorous understanding of strengths and weaknesses
- ... leading to fundamental progress
- Improved training methods
- Honest public relations

No snake oil; no winter

not hope

2. Research

Proper losses

Proper Losses for Discrete Generative Models, ICML 2023.

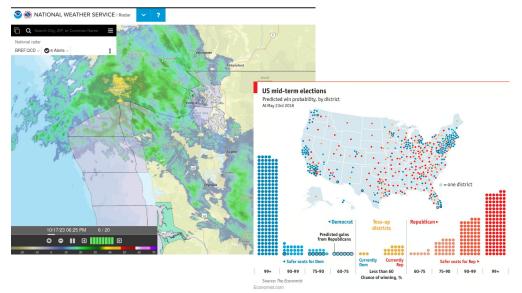
Dhamma Kimpara CU Boulder

Rafael Frongillo CU Boulder

Bo Waggoner CU Boulder

Motivation: forecasting

Example: forecast a weather system trajectory, or an election



Motivation: forecasting

Example: forecast a weather system trajectory, or an election

Typical approach:

- model the world
- generate i.i.d. examples from the model
- use these "possible futures" to forecast

Motivation: forecasting

Example: forecast a weather system trajectory, or an election

Typical approach:

- model the world
- generate i.i.d. examples from the model
- use these "possible futures" to forecast

Goal: generative model should match reality as closely as possible. *Similar: GANs*

Background

Traditional proper loss: ℓ (prediction, outcome) such that $\mathbb{E}_{y \sim q} \ell(p, y)$ is minimized by predicting p = q. a.k.a. proper scoring rule

Background

Traditional proper loss: ℓ (prediction, outcome) such that $\mathbb{E}_{y \sim q} \ell(p, y)$ is minimized by predicting p = q. a.k.a. proper scoring rule

Key examples:

Squared loss,
$$\ell(p, y) = \|p - \delta_y\|_2^2$$
a.k.a Brier score
 Log loss, $\ell(p, y) = \log(1/p_y)$
a.k.a cross entropy a.k.a cross entropy

Lots of research in supervised learning: consistency, calibration, etc

Generative models

Problem: generative models are (often) black boxes.

 \implies cannot generally query p_y .

or not easy, efficient

 \implies cannot calculate loss $\ell(p, y)$.

Recall: $||p - \delta_y||_2^2$, $\log(1/p_y)$.

Generative models

Problem: generative models are (often) black boxes.

- \implies cannot generally query p_y . or not easy, efficient
- \implies cannot calculate loss $\ell(p, y)$. Recall: $\|p \delta_y\|_2^2$, $\log(1/p_y)$.

Their only interface (suppose): press button, generate example

Proposal

Let p be a model and q a ground truth distribution.

```
We draw samples A \sim p and B \sim q.
```

The loss is $\ell(A, B)$.

Proposal

Let p be a model and q a ground truth distribution.

```
We draw samples A \sim p and B \sim q.
```

```
The loss is \ell(A, B).
```

The loss is **black-box proper** if, for all q, $\mathbb{E}[\ell(A, B)]$ is minimized by choosing p = q.

Observation: There is no black-box strictly proper loss.

Observation: There is no black-box strictly proper loss.

Why: there exists some observation a that minimizes $\mathbb{E} \left[\ell(a, B) \right]$; set $p = \delta_a$.

Observation: There is no black-box strictly proper loss.

Why: there exists some observation a that minimizes $\mathbb{E}\left[\ell(a, B)\right]$; set $p = \delta_a$.

Solution: draw multiple iid examples from the model *p*.

Observation: There is no black-box strictly proper loss.

Why: there exists some observation a that minimizes $\mathbb{E}\left[\ell(a, B)\right]$; set $p = \delta_a$.

Solution: draw multiple iid examples from the model *p*.

(n,m) black box loss:

- A is n iid draws from p (the model)
- B is m iid draws from q (the world).

Main result

Theorem

For any $n \ge 2$ and any $m \ge 1$, there exists an (n,m) black-box strictly proper loss.

Main result

Theorem

For any $n \ge 2$ and any $m \ge 1$, there exists an (n,m) black-box strictly proper loss.

Furthermore, ℓ is strictly black-box proper $\iff g(p,q) := \mathbb{E}[\ell(A,B)]$ is a polynomial in p and q of degree at most n and m resp. such that, for all q, the minimizer of g is p = q.

Furthermore, we can construct ℓ from g using theory of unbiased estimators.

Key example: squared loss.

Naive attempt:
$$\ell(A, B) = \|\hat{p} - \hat{q}\|^2$$

empirical distributions

Key example: squared loss.

Naive attempt:
$$\ell(A,B) = \|\hat{p} - \hat{q}\|^2$$

empirical distributions

Problem: beneficial to extremize.

 $\mathbb{E}[\ell(A,B)] = \|p-q\|^2 + \sum_y \operatorname{Var}(p_y)$

Key example: squared loss.

Naive attempt: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2$

empirical distributions

Problem: beneficial to extremize.

 $\mathbb{E}[\ell(A,B)] = \|p-q\|^2 + \sum_y \operatorname{Var}(p_y)$

Fixed: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2 - \sum_y f(\hat{p}_y)$. f = unbiased estimator for Var

Key example: squared loss.

Naive attempt: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2$ empirical distributions

Problem: beneficial to extremize.

 $\mathbb{E}[\ell(A,B)] = \|p-q\|^2 + \sum_y \operatorname{Var}(p_y)$

Fixed: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2 - \sum_y f(\hat{p}_y)$. f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Key example: squared loss.

Naive attempt: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2$ empirical distributions

Problem: beneficial to extremize.

 $\mathbb{E}[\ell(A,B)] = \|p-q\|^2 + \sum_y \operatorname{Var}(p_y)$

Fixed: $\ell(A, B) = \|\hat{p} - \hat{q}\|^2 - \sum_y f(\hat{p}_y)$. f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement **log loss** via Taylor series.

Practicality

Problem: in high-dimensional spaces, "signal" is rare

lower bounds for distribution learning

Practicality

Problem: in high-dimensional spaces, "signal" is rare *lower bounds for distribution learning*

When these losses are practical: on low-dimensional features

- **Language:** sentence lengths, other statistics
- Images: autoencoder-type features
- Structured output: low-dimensional summaries

Could search for a feature with high loss, a la GANs

3. Future

Type 1: forecasting \rightarrow proper losses

but dimensionality challenges

Type 1: forecasting \rightarrow proper losses

but dimensionality challenges

Type 2: creative \rightarrow RLHF, etc. seem to be working?

Type 1: forecasting \rightarrow proper losses

but dimensionality challenges

Type 2: creative \rightarrow RLHF, etc. seem to be working?

Type 3: problem-solving, question-answering \rightarrow issues!

Type 1: forecasting \rightarrow proper losses

but dimensionality challenges

Type 2: creative \rightarrow RLHF, etc. seem to be working?

Type 3: problem-solving, question-answering \rightarrow issues!

- When can we frame these as forecasting?
- Contrast: game-playing
- Contrast: zero-knowledge proofs

cf Yogi Berra

Type 1: forecasting \rightarrow proper losses

but dimensionality challenges

- **Type 2:** creative \rightarrow RLHF, etc. seem to be working?
- **Type 3:** problem-solving, question-answering \rightarrow issues!
 - When can we frame these as forecasting?
 - Contrast: game-playing
 - Contrast: zero-knowledge proofs

Thanks!

cf Yogi Berra