Where Information and Incentives Collide

Bo Waggoner
University of Colorado, Boulder
September 14, 2023

Outline

1 Contracts
2 Public projects
3 Matching
Themes

- Gathering hidden information
- Navigating preferences and strategic behavior
- Coordinating good decisionmaking
- Solving algorithmic problems in societal contexts

Contracts

Joint work with Maneesha Papireddygari
The 2022 ACM Conference on Economics and Computation (EC '22)

Eliciting predictions

First question: how to elicit a prediction?

Eliciting predictions

First question: how to elicit a prediction?

- An expert makes a prediction p

Eliciting predictions

First question: how to elicit a prediction?

- An expert makes a prediction p
- We observe whether the event happened, y

Eliciting predictions

First question: how to elicit a prediction?

- An expert makes a prediction p
- We observe whether the event happened, y
- We assign a score or payment $S(p, y)$

Characterization of proper scoring rules

Fact (McCarthy 1956; Savage 1971; ...)

A scoring rule is proper (meaning truthful) if and only if it is

$$
S(p, y)=G(p)+\nabla G(p) \cdot\left(\delta_{y}-p\right)
$$

for some convex G.

Next problem: information acquisition

What if the expert can acquire costly information?

How do we incentivize truthful, accurate predictions?

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

Contract t

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

What about both at once?

Final problem: hidden action with information acquisition.

Overview of problems

Overview of problems

Overview of problems

Key insight

Results

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Results

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.
S ("no leak", "no leak") \longrightarrow
S ("leak", "leak") $\longrightarrow \infty$
S("leak", "no leak")

S("no leak", "leak")

Results

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

For any of the above problems, given any target plan, we can construct an incentive-compatible, optimal scoring rule in polynomial time.

Results

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

For any of the above problems, given any target plan, we can construct an incentive-compatible, optimal scoring rule in polynomial time.

Proposition

For the information acquisition problem, there is a closed-form solution (an inverted pyramid).

Connections and takeaways

- actions \leftrightarrow predictions
- value of information
- framing contract design as information elicitation

Public Projects

Joint work with Mary Monroe,
in preparation
Funding: The Ethereum Foundation (2022-)

Public Projects

A classic problem: a bunch of people want to decide what to do together.

A mathematical model. . .

Each person has a value for each alternative

A mathematical model. . .

Each person has a value for each alternative Assume: value is in units of money

A mathematical model. . .

Each person has a value for each alternative Assume: value is in units of money
Goal: maximize social welfare of project

Existing solutions

Classical solution: a "VCG mechanism".
Maximizes welfare, but...

- Fragile: false-name attacks, ...
- Unpredictable: payments may be zero, very high, in between...
- No revenue: often, nobody pays anything

Using quadratic voting

Proposal (Eguia et al. 2022): quadratic-voting-like approach!

- Each person casts "votes" for (or against) each option
- Pay c times the number of votes, squared

Using quadratic voting

Proposal (Eguia et al. 2022): quadratic-voting-like approach!

- Each person casts "votes" for (or against) each option
- Pay c times the number of votes, squared
- Pick the winner with "softmax":

$$
\operatorname{Pr}[\text { select project } j]=\frac{e^{\text {total votes for } j}}{\sum_{k} e^{\text {total votes for } k}}
$$

Prior work

Theorem (Eguia et al. 2022): if participants' preferences are drawn i.i.d. with bounded values, then in any symmetric Bayes-Nash equilibrium,

$$
\operatorname{Pr}[\text { select outcome with maximum social welfare }] \rightarrow 1
$$

as
num. participants $\rightarrow \infty$.

Our results

Our results

Proposition

With two choices, in any pure-strategy equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq 1-\sqrt{\frac{2 c}{U_{1}-U_{2}}}
$$

Our results

Proposition

With two choices, in any pure-strategy equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq 1-\sqrt{\frac{2 c}{U_{1}-U_{2}}}
$$

Proposition

A pure-strategy equilibrium exists if $c>\frac{3}{2} \max _{i, k}\left|u_{k}^{i}\right|$.

Proof ingredients

- analyze Hessian of utility function
related: exponential families
- fixed-point theorem for concave utilities
- properties of $x e^{-x}$

Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq 1-f\left(c, U_{1}, \ldots, U_{m}\right)
$$

where we can write down f, but it ain't pretty.

Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq 1-f\left(c, U_{1}, \ldots, U_{m}\right)
$$

where we can write down f, but it ain't pretty.

Conjecture

1 If all participants agree on the ordering of the alternatives, a pure-strategy equilibrium always exists.
2 In mixed-strategy equil., SW remains high under many conditions.

Future work

- Explore limits of this mechanism
- Explore connections to prediction and decision markets

Matching

Joint work with Robin Bowers,

to appear in the 2023 Conference on Web and Internet Economics (WINE)

Funding: The National Science Foundation (2023-)

Matching

Classic problem: how to match e.g. workers to jobs?

Max-Weight Matching

One formulation: maximize total value of the matching.

Problem: unknown values

Typically, we initially don't know our preferences.

Problem: unknown values

Typically, we initially don't know our preferences.
We need to spend time, effort, and money to find out.
Reading résumés, market research, interviews, ...

Problem: unknown values

Typically, we initially don't know our preferences.
We need to spend time, effort, and money to find out.
Reading résumés, market research, interviews, ...
Model: each person has a distribution over possible values for each job, and a cost for finding out.

Simplified version of the problem

- Matching people to items

Simplified version of the problem

- Matching people to items
- Selling one item

The Pandora's Box Problem

Due to Weitzman (1979)
also a case of Gittins index thm.

The Pandora's Box Problem

Due to Weitzman (1979)
also a case of Gittins index thm.
Optimal "descending policy":

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

The Pandora's Box Problem

Due to Weitzman (1979)
also a case of Gittins index thm.
Optimal "descending policy":

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

The Pandora's Box Problem

Due to Weitzman (1979)
also a case of Gittins index thm.
Optimal "descending policy":

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

The Pandora's Box Problem

Due to Weitzman (1979)
also a case of Gittins index thm.
Optimal "descending policy":

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

Pandora's Box for auctions

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Pandora's Box for auctions

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]
Idea: mimick the optimal policy with a descending-price auction.

Pandora's Box for auctions

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]
Idea: mimick the optimal policy with a descending-price auction.
Result: constant-factor approximation to optimal social welfare.

Pandora's Box for auctions

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]
Idea: mimick the optimal policy with a descending-price auction.
Result: constant-factor approximation to optimal social welfare.
Observation: failure of ascending-price; and of any sealed-bid auction.

Back to our problem: two-sided matching

Proposal: the Marshallian Match. ${ }^{1}$
${ }^{1}$ Proposed, but not analyzed, in Waggoner, Weyl (2019).

Back to our problem: two-sided matching

Proposal: the Marshallian Match. ${ }^{1}$

- Participants maintain bids on all potential partners.

[^0]
Back to our problem: two-sided matching

Proposal: the Marshallian Match. ${ }^{1}$

- Participants maintain bids on all potential partners.
- A global price descends over time.

[^1]
Back to our problem: two-sided matching

Proposal: the Marshallian Match. ${ }^{1}$

- Participants maintain bids on all potential partners.
- A global price descends over time.
- When the price reaches the total bid on an edge, it matches.

[^2]
Back to our problem: two-sided matching

Proposal: the Marshallian Match. ${ }^{1}$

- Participants maintain bids on all potential partners.
- A global price descends over time.
- When the price reaches the total bid on an edge, it matches.
- Both sides pay their bids.

[^3]
Results (1)

Theorem

If all participants' values are positive, the Marshallian Match guarantees, in any Bayes-Nash equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq \frac{1}{8}
$$

Results (1)

Theorem

If all participants' values are positive, the Marshallian Match guarantees, in any Bayes-Nash equilibrium,

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq \frac{1}{8}
$$

- Holds for model with inspection costs
- Also holds for matchings on hypergraphs (group formation) factor depends on maximum group size

Some proof ingredients

Ingredient 1: greedy max-weight matching

Some proof ingredients

Ingredient 1: greedy max-weight matching
Ingredient 2: smoothness framework of algorithmic mechanism design

Some proof ingredients

Ingredient 1: greedy max-weight matching
Ingredient 2: smoothness framework of algorithmic mechanism design
Ingredient 3: Pandora's analysis ideas from KWW16

Some proof ingredients

Ingredient 1: greedy max-weight matching
Ingredient 2: smoothness framework of algorithmic mechanism design
Ingredient 3: Pandora's analysis ideas from KWW16
Ingredient 4: Rebate variant of Match: align incentives with early matching

Some proof ingredients

Ingredient 1: greedy max-weight matching
Ingredient 2: smoothness framework of algorithmic mechanism design
Ingredient 3: Pandora's analysis ideas from KWW16
Ingredient 4: Rebate variant of Match: align incentives with early matching

Ingredient 5: Information-hiding allows counterfactual analysis

Results (2)

Results (2)

Theorem

In general settings with common-knowledge values, if player strategies are 2-ex-ante stable, the Marshallian Match guarantees

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq \frac{1}{8}
$$

Results (2)

Theorem

In general settings with common-knowledge values,
if player strategies are 2-ex-ante stable, the Marshallian Match guarantees

$$
\frac{\text { Social Welfare }}{\text { Optimal SW }} \geq \frac{1}{8}
$$

- Ex-ante stability: extension of equilibrium to pairs of players
- Proven for model without inspection costs; may extend
- Unknown: extends to Bayes-Nash setting? (main open problem)

Outro

Outro

Other exciting work going on in algorithmic economics and theoretical ML group²: Prof. Raf Frongillo; Ph.D. students Dhamma, Anish, Maneesha, Rick, Robin, Mary, Melody, Elias; theory group: Prof. Josh Grochow, Prof. Huck Bennett, students,

[^4]

Thanks!

[^0]: ${ }^{1}$ Proposed, but not analyzed, in Waggoner, Weyl (2019).

[^1]: ${ }^{1}$ Proposed, but not analyzed, in Waggoner, Weyl (2019).

[^2]: ${ }^{1}$ Proposed, but not analyzed, in Waggoner, Weyl (2019).

[^3]: ${ }^{1}$ Proposed, but not analyzed, in Waggoner, Weyl (2019).

[^4]: ${ }^{2}$ [JF, RF, BW (COLT 2020, NeurIPS 2021, JMLR 2023)] [RF, BW (NeurIPS 2021)] [RF, AG, AT, BW (EC 2021)] [DK, RF, BW (ICML 2023)].

