Where Information and Incentives Collide

Bo Waggoner

University of Colorado, Boulder September 14, 2023

stays up?

Outline

- 1 Contracts
- 2 Public projects
- 3 Matching

Themes

- Gathering hidden information
- Navigating preferences and strategic behavior
- Coordinating good decisionmaking
- Solving algorithmic problems in societal contexts

Contracts

Joint work with Maneesha Papireddygari The 2022 ACM Conference on Economics and Computation (EC '22)

First question: how to elicit a prediction?

First question: how to elicit a prediction?

An expert makes a **prediction** p

First question: how to elicit a prediction?

- An expert makes a **prediction** *p*
- We **observe** whether the event happened, y

First question: how to elicit a prediction?

- An expert makes a **prediction** p
- We **observe** whether the event happened, y
- We assign a score or payment S(p, y)

Characterization of proper scoring rules

Fact (McCarthy 1956; Savage 1971; ...)

A scoring rule is **proper** (meaning truthful) if and only if it is

 $S(p, y) = G(p) + \nabla G(p) \cdot (\delta_y - p)$

for some convex G.

Next problem: information acquisition

What if the expert can acquire costly information?

How do we incentivize truthful, accurate predictions?

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

Contract t

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

Next problem: hidden action (moral hazard)

How to write contracts to incentivize good, unverifiable work?

- Long history in economics
- Recent algorithmic work in CS/Econ

What about both at once?

Final problem: hidden action with information acquisition.

Overview of problems

Overview of problems

Overview of problems

Key insight

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

For any of the above problems, given any target plan, we can construct an incentive-compatible, optimal scoring rule in polynomial time.

Proposition

Any solution to any of the above problems is, without loss of generality, a proper scoring rule.

Proposition

For any of the above problems, given any target plan, we can construct an incentive-compatible, optimal scoring rule in polynomial time.

Proposition

For the information acquisition problem, there is a closed-form solution (an inverted pyramid).

Connections and takeaways

- actions \leftrightarrow predictions
- value of information
- framing contract design as information elicitation

Public Projects

Joint work with Mary Monroe,

in preparation

Funding: The Ethereum Foundation (2022-)

Public Projects

A classic problem: a bunch of people want to decide what to do together.

A mathematical model...

Each person has a value for each alternative

A mathematical model...

Each person has a **value** for each alternative **Assume:** value is in units of money

A mathematical model...

Each person has a **value** for each alternative **Assume:** value is in units of money **Goal:** maximize **social welfare** of project

Existing solutions

Classical solution: a "VCG mechanism".

Maximizes welfare, but...

- *Fragile:* false-name attacks, . . .
- Unpredictable: payments may be zero, very high, in between...
- No revenue: often, nobody pays anything

Using quadratic voting

Proposal (Eguia et al. 2022): quadratic-voting-like approach!

- Each person casts "votes" for (or against) each option
- Pay *c* times the number of votes, **squared**

c a parameter

Using quadratic voting

Proposal (Eguia et al. 2022): quadratic-voting-like approach!

- Each person casts "votes" for (or against) each option
- Pay *c* times the number of votes, **squared**
- Pick the winner with "softmax":

$$\Pr[\text{select project } j] = \frac{e^{\text{total votes for } j}}{\sum_k e^{\text{total votes for } k}}$$

c a parameter

Prior work

as

Theorem (Eguia et al. 2022): if participants' preferences are drawn i.i.d. with bounded values, then in any symmetric Bayes-Nash equilibrium,

 $\Pr[\text{select outcome with maximum social welfare}] \rightarrow 1$

num. participants $\rightarrow \infty$.

Our results

Our results

Proposition

With two choices, in any pure-strategy equilibrium,

$$\frac{\textit{Social Welfare}}{\textit{Optimal SW}} \ge 1 - \sqrt{\frac{2c}{U_1 - U_2}}$$

Our results

Proposition

With two choices, in any pure-strategy equilibrium,

$$\frac{\text{Social Welfare}}{\text{Optimal SW}} \ge 1 - \sqrt{\frac{2c}{U_1 - U_2}}$$

Proposition

A pure-strategy equilibrium exists if $c > \frac{3}{2} \max_{i,k} |u_k^i|$.

Proof ingredients

- analyze Hessian of utility function
- fixed-point theorem for concave utilities
- properties of xe^{-x}

related: exponential families

Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

$$\frac{\text{Social Welfare}}{\text{Optimal SW}} \ge 1 - f(c, U_1, \dots, U_m)$$

where we can write down f, but it ain't pretty.

Results continued

Proposition

With m choices, in any pure-strategy equilibrium,

$$\frac{\text{Social Welfare}}{\text{Optimal SW}} \ge 1 - f(c, U_1, \dots, U_m)$$

where we can write down f, but it ain't pretty.

Conjecture

- **1** If all participants agree on the ordering of the alternatives, a pure-strategy equilibrium always exists.
- 2 In mixed-strategy equil., SW remains high under many conditions.

Future work

- Explore limits of this mechanism
- Explore connections to prediction and decision markets

Matching

Joint work with Robin Bowers,

to appear in the 2023 Conference on Web and Internet Economics (WINE)

Funding: The National Science Foundation (2023-)

Matching

Classic problem: how to match e.g. workers to jobs?

Max-Weight Matching

One formulation: maximize total value of the matching.

Problem: unknown values

Typically, we initially **don't know** our preferences.

Problem: unknown values

Typically, we initially **don't know** our preferences.

We need to spend time, effort, and money to find out.

Reading résumés, market research, interviews,

Problem: unknown values

Typically, we initially **don't know** our preferences.

We need to **spend time, effort, and money** to find out. *Reading résumés, market research, interviews, ...*

Model: each person has a **distribution** over possible values for each job, and a **cost** for finding out.

Simplified version of the problem

Matching people to items

Simplified version of the problem

- Matching people to items
- Selling one item

Due to Weitzman (1979)

also a case of Gittins index thm.

Due to Weitzman (1979)

also a case of Gittins index thm.

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

Due to Weitzman (1979)

also a case of Gittins index thm.

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

Due to Weitzman (1979)

also a case of Gittins index thm.

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

Due to Weitzman (1979)

also a case of Gittins index thm.

- Compute an index for each alternative.
- Inspect from highest index down until we find a large value.

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Idea: mimick the optimal policy with a descending-price auction.

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Idea: mimick the optimal policy with a descending-price auction.

Result: constant-factor approximation to optimal social welfare.

Application: selling one item [Kleinberg, Waggoner, Weyl (EC 2016).]

Idea: mimick the optimal policy with a descending-price auction.

Result: constant-factor approximation to **optimal social welfare**.

Observation: failure of ascending-price; and of any sealed-bid auction.

¹Proposed, but not analyzed, in *Waggoner, Weyl (2019)*.

Proposal: the Marshallian Match.¹

Participants maintain bids on all potential partners.

¹Proposed, but not analyzed, in Waggoner, Weyl (2019).

- Participants maintain bids on all potential partners.
- A global price descends over time.

¹Proposed, but not analyzed, in Waggoner, Weyl (2019).

- Participants maintain bids on all potential partners.
- A global price descends over time.
- When the price reaches the total bid on an edge, it matches.

¹Proposed, but not analyzed, in Waggoner, Weyl (2019).

- Participants maintain bids on all potential partners.
- A global price descends over time.
- When the price reaches the total bid on an edge, it matches.
- Both sides pay their bids.

¹Proposed, but not analyzed, in Waggoner, Weyl (2019).

Results (1)

Theorem

If all participants' values are positive, the Marshallian Match guarantees, in any Bayes-Nash equilibrium,

 $\frac{\text{Social Welfare}}{\text{Optimal SW}} \geq \frac{1}{8}.$

Results (1)

Theorem

If all participants' values are positive, the Marshallian Match guarantees, in any Bayes-Nash equilibrium,

 $\frac{\text{Social Welfare}}{\text{Optimal SW}} \ge \frac{1}{8}.$

- Holds for model with inspection costs
- Also holds for matchings on hypergraphs (group formation) factor depends on maximum group size

Ingredient 1: greedy max-weight matching

Ingredient 1: greedy max-weight matching

Ingredient 2: smoothness framework of algorithmic mechanism design

Ingredient 1: greedy max-weight matching

Ingredient 2: smoothness framework of algorithmic mechanism design

Ingredient 3: Pandora's analysis ideas from KWW16

Ingredient 1: greedy max-weight matching

Ingredient 2: smoothness framework of algorithmic mechanism design

Ingredient 3: Pandora's analysis ideas from KWW16

Ingredient 4: Rebate variant of Match: align incentives with early matching

Ingredient 1: greedy max-weight matching

Ingredient 2: smoothness framework of algorithmic mechanism design

Ingredient 3: Pandora's analysis ideas from KWW16

Ingredient 4: Rebate variant of Match: align incentives with early matching

Ingredient 5: Information-hiding allows counterfactual analysis

Results (2)

Results (2)

Theorem

In general settings with common-knowledge values, if player strategies are 2-ex-ante stable, the Marshallian Match guarantees

 $\frac{\text{Social Welfare}}{\text{Optimal SW}} \geq \frac{1}{8}.$

Results (2)

Theorem

In general settings with common-knowledge values, if player strategies are 2-ex-ante stable, the Marshallian Match guarantees

 $\frac{\text{Social Welfare}}{\text{Optimal SW}} \geq \frac{1}{8}.$

- *Ex-ante stability:* extension of equilibrium to pairs of players
- Proven for model without inspection costs; may extend
- Unknown: extends to Bayes-Nash setting? (main open problem)

Outro

Outro

Other exciting work going on in **algorithmic economics and theoretical ML group**²: Prof. Raf Frongillo; Ph.D. students Dhamma, Anish, Maneesha, Rick, Robin, Mary, Melody, Elias; **theory group**: Prof. Josh Grochow, Prof. Huck Bennett, students,

²[JF, RF, BW (COLT 2020, NeurIPS 2021, JMLR 2023)] [RF, BW (NeurIPS 2021)] [RF, AG, AT, BW (EC 2021)] [DK, RF, BW (ICML 2023)].

Thanks!