1 Non-Probabilistic Inequalities and Approximations

Exponential function. For all x,

$$1 + x \leq e^x.$$

Easily following are e.g. $1 - x \leq e^{-x}$, or $(1 + x)^c \leq e^{cx}$, or $(1 + \frac{1}{x})^c \leq e^{c/x}$, etc.

Also (and the inequality reverses for negative x),

$$e^{-x} \leq 1 - x + \frac{x^2}{2} \quad \text{(for } x \geq 0).$$

Follows from Taylor’s Theorem, as we have $e^{-x} = 1 - x + \frac{x^2}{2} + R$ where $R \leq 0$. See the Taylor series and Taylor’s Theorem for e^x.

Logarithm. For all $x \geq 0$,

$$x - \frac{x^2}{2} \leq \ln (1 + x) \leq x.$$

You can push this as far as you want with the Taylor expansion, e.g.

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \leq \ln (1 + x) \leq x - \frac{x^2}{2} + \frac{x^3}{3}.$$
Cosh. The hyperbolic cosine function is \(\cosh(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x} \). For all \(x \),
\[
\frac{1}{2}e^x + \frac{1}{2}e^{-x} \leq e^{x^2/2}.
\]

Bernoulli’s Inequality. For all \(x \geq -1 \), and \(n \leq 0 \) or \(n \geq 1 \),
\[
1 + xn \leq (1 + x)^n.
\]
For \(0 < n < 1 \), the inequality is reversed.
See also the Binomial expansion of \((1 + x)^n\) when \(n \) is an integer.

Stirling’s Approximation for the factorial. The factorial satisfies
\[
\left(\frac{n}{e} \right)^n \leq n! \leq n^n.
\]
As \(n \to \infty \), Stirling’s approximation says that
\[
n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n.
\]
This is quite tight; in fact we have\(^{[1]}\)
\[
\sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{-\frac{1}{12n+1}} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{1/12}.
\]

Binomial coefficients. The binomial coefficient “\(n \) choose \(k \)” is
\[
\binom{n}{k} = \frac{n!}{(n-k)!k!},
\]
and we have
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k} \right)^k.
\]
Jensen’s Inequality. Suppose f is convex: for $\alpha \in (0, 1)$, $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y)$. Then for any random variable X,

$$f(\mathbb{E}X) \leq \mathbb{E} f(X).$$

In particular, for positive $\{a_i\}$,

$$f\left(\frac{\sum a_i x_i}{\sum a_i}\right) \leq \frac{\sum a_i f(x_i)}{\sum a_i}.$$

For concave functions, all inequalities are reversed.

p-norm Inequalities. The ℓ_p norm, for $1 \leq p$, of a vector $x \in \mathbb{R}^d$ is $\|x\|_p = \left(\sum_{j=1}^d |x_j|^p\right)^{1/p}$.

The ℓ_∞ norm is $\max_j |x_j|$. For $1 \leq p \leq r \leq \infty$,

$$\|x\|_r \leq \|x\|_p \leq d^{\frac{1}{p} - \frac{1}{r}} \|x\|_r$$

where $\frac{1}{\infty} = 0$. (In this setting, there's no difference between L_p and ℓ_p.)

The first inequality is tight for $x = \alpha(0, \ldots, 0, \pm1, 0, \ldots, 0)$; the second for $x = \alpha(\pm1, \ldots, \pm1)$.

2 Probabilistic Inequalities and Bounds

Union Bound. For any events A_1, A_2, \ldots (no matter how correlated),
\[
\Pr[A_1 \text{ or } A_2 \text{ or } \cdots] \leq \Pr[A_1] + \Pr[A_2] + \cdots.
\]
If each A_i has probability p, and there are n of them, then the union bound gives np. If you think they behave approximately independently, then the true probability should be about $1 - (1 - p)^n \approx np - O((np)^2)$. (Using that the Binomial expansion of $(1 - p)^n$ is $1 - np + \binom{n}{2}p^2 - \ldots$)

Markov’s Inequality. Let X be a nonnegative real-valued random variable. Then
\[
\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}.
\]
This is especially useful when both quantities are very small, e.g. $\mathbb{E}[X] \to 0$ and we want to bound $\Pr[X \geq 1]$.

Chebyshev’s Inequality. Let Y be a real-valued random variable. By applying Markov’s to the variable $X = |Y - \mathbb{E}[Y]|^2$, we can get
\[
\Pr[|Y - \mathbb{E}[Y]| \geq b] \leq \frac{\text{Var}(Y)}{b^2}.
\]

Chernoff Bound for Binomials. Let $X \sim \text{Binomial}(m, p)$ (that is, the number of heads in m independent coin flips with probability p each). Then
\[
\Pr[X \leq k] \leq e^{-(mp - k)^2/2mp}.
\]
(Of course, mp is the expected number of heads.) Put another way,
\[
\Pr[X \leq mp - c\sqrt{mp}] \leq e^{-c^2/2}.
\]
You can get a tail bound both above and below: For $k \leq mp$,
\[
\Pr[|X - mp| \geq k] \leq 2e^{-k^2/3mp}.
\]
A useful reference is Mitzenmacher and Upfal [2].

Hoeffding’s Inequality. Essentially a generalization of the above. Let X_1, \ldots, X_m be i.i.d. with each X_i supported on an interval of size b_i; let $S = \sum_i X_i$. Then
\[
\Pr[|S - \mathbb{E}[S]| \geq k] \leq 2e^{-2k^2/\sum_i b_i^2}.
\]
Tail bounds in terms of δ. A useful restatement of Hoeffding’s is as follows. Let each $b_i = 1$ for simplicity. If we let $k = |S - \mathbb{E}[S]|$, then with probability at least $1 - \delta$,

$$k \leq \sqrt{\frac{m}{2} \ln \left(\frac{2}{\delta}\right)}.$$

Such rephrasing can come from any Chernoff-style tail bound and is common in e.g. PAC learning.

Chernoff+Union and $\log(n)$. Suppose (for concreteness) we have n Binomials(m, p) and we want to claim that with probability $1 - \delta$, all of them are at most a distance k from their expectation. We can show (notice the new factor of $\log(n)$)

$$k \leq \sqrt{\frac{m}{2} \ln \left(\frac{n}{\delta}\right)}$$

because by Chernoff or Hoeffding, each of the n Binomials is within k of its expectation with probability at least $1 - \frac{\delta}{n}$, so by a union bound over the n of them, the probability that any one differs by more than k is bounded by δ.

Note we did not need independence for the union bound. Because of this phenomenon, one often sees the phrasing that a union bound “adds a factor of $\log(n)$”.
3 More “Advanced” Probabilistic Inequalities

Subgaussianity. If X has mean zero and is λ^2-subgaussian, meaning $E e^{\theta X} \leq e^{\theta^2 \frac{\lambda^2}{2}}$ for all $\theta > 0$, then by the Chernoff method

$$
\Pr[X \geq t] \leq \frac{E e^{\theta X}}{e^{\theta t}} \\
\leq e^{\theta^2 \frac{\lambda^2}{2} - \theta t} \\
\leq e^{-t^2/(2\lambda^2)}
$$

by choosing $\theta = t/\lambda^2$.

X also has variance at most λ^2. If X and Y are λ_1 and λ_2-subgaussian, respectively, then $\alpha X + \beta Y$ is $(|\alpha|\lambda_1 + |\beta|\lambda_2)$-subgaussian, since $E e^{\theta (\alpha X + \beta Y)} = E e^{\theta \alpha X} E e^{\theta \beta Y}$, etc. A normal $(0, \sigma^2)$ is σ^2-subgaussian, any centered variable with $|X| \leq \lambda$ is λ^2-subgaussian, and a Binomial(n, p) minus its mean, being the sum of n centered Bernoullis which are each 1-subgaussian, is n-subgaussian.

McDiarmid’s Inequality. Let X_1, \ldots, X_n be independent and write $\vec{X} = (X_1, \ldots, X_n)$. If $f(\vec{X})$ has sensitivity c, i.e. if for all \vec{X}, \vec{X}' identical except for a single X_i,

$$
|f(\vec{X}) - f(\vec{X}')| \leq c,
$$

then

$$
\Pr \left[|f(\vec{X}) - E f(\vec{X})| \geq t \right] \leq e^{-2t^2/(nc^2)}.
$$

Martingales and Azuma’s. The variables X_1, \ldots, X_n form a martingale if each $E [X_i \mid X_1, \ldots, X_{i-1}] = X_{i-1}$, for example, a random walk. If it satisfies bounded differences, i.e. $|X_i - X_{i-1}| \leq c$ for all i with probability 1, then Azuma’s inequality states

$$
\Pr [X_n - E X_n \geq t] \leq e^{-t^2/(2nc^2)}.
$$
4 Geometric and Random Phenomena

Balls-in-bins, Birthday, Coupons. Consider throwing \(m \) balls uniformly at random into \(n \) bins.

1. The birthday paradox says that, once \(m \geq \Theta(\sqrt{n}) \), we expect some bin to contain at least two balls (a “collision”). This follows because any pair of balls has a \(\frac{1}{n} \) chance of colliding and there are \(\binom{m}{2} \) pairs of balls, giving the expected number of collisions \(\binom{m}{2} \frac{1}{n} \).

2. When \(m = n \), the max-loaded bin has with very good probability a load of \(O(\log n / \log \log n) \).

3. The coupon-collector’s problem asks how many balls must be thrown before every bin receives at least one ball. The answer is \(O(n \log n) \), as follows. When \(k \) bins are empty, the expected time to fill one of them is \(\frac{n}{k} \), so the expected number of balls needed is \(\frac{n}{m} + \frac{n}{m-1} + \cdots + \frac{n}{1} = n \sum_{k=1}^{n} \frac{1}{k} = nH_n \), where \(H_n \) is called the \(n \)th harmonic number, which is on the order of \(\log n \).

High-dimensional Cubes. The unit hypercube in \(\mathbb{R}^d \) has vertices \(\{0, 1\}^d \). It has volume 1, but the distance between two opposite vertices (e.g. \((0, \ldots, 0)\) and \((1, \ldots, 1)\)) is \(\sqrt{d} \to \infty \) as \(d \) increases. It is often helpful to visualize the “Boolean hypercube” (the set of vertices of the hypercube) as a sequence or stack of horizontal layers, where each horizontal “slice” is the set of vertices that have \(k \) coordinates equal to 1 and \(d-k \) coordinates equal to 0, with the “top” \((k = 0)\) layer containing only \((0, \ldots, 0)\) and the “bottom” \((k = d)\) layer containing only \((1, \ldots, 1)\); the middle layer contains \(\binom{d}{2} \) vertices.

High-dimensional Spheres. The unit sphere in \(\mathbb{R}^d \) is the set of points at Euclidean distance one from the origin. The volume of the enclosed ball is \(\frac{\pi^{d/2}}{\Gamma(1+d/2)} \), where \(\Gamma \) is the generalization of the factorial function to real numbers with \(\Gamma(1 + x) = x! \) if \(x \) is an integer. In particular, the volume approaches zero as \(d \to \infty \), although the radius is a constant 1.

A sphere of radius 0.5 centered in the unit cube will touch the center of every face of the cube, yet encloses a volume rapidly approaching zero as \(d \) grows (fills almost none of the cube). It may be helpful to visualize the \(d \)-dimensional sphere as a “spiky” body with little volume but reaching out in every dimension.

The “Spherical Shell” in High Dimensions. For random vectors with independent coordinates, we often expect concentration in a spherical “shell” at a certain distance from the origin. For instance, suppose we choose a point in \(\mathbb{R}^d \) by picking each coordinate \(X_i \) in \(\{0, 1\} \) uniformly and independently. The squared distance to the origin is \(\sum_{i=1}^{d} X_i^2 = \sum_{i=1}^{d} X_i \), which by the Chernoff bound for Binomials is highly concentrated around \(\frac{d}{2} \). In other words, the distance to the origin is concentrated near \(\sqrt{d/2} \), which is to say most of the probability lies in a spherical shell.
5 Proof Techniques

Iterated Expectations. The expected value of X is the expected value, over all values of Y, of the expected value of X given Y.

$$E_X X = E_Y \left[E_{X|Y} X \right].$$

This allows computing the expected value of X “indirectly” by marginalizing over Y.

Minimax (“Yao’s Principle”). The best deterministic algorithm for a fixed input distribution beats any randomized algorithm on a worst-case input. Let \mathcal{A} be a randomized algorithm (that is, distribution over deterministic algorithms) and let \mathcal{X} be a distribution over inputs. Then

$$\max_{\text{deterministic algos } a} E_{\text{performance}(a, \mathcal{X})} \geq \min_{\text{inputs } x} E_{\text{performance}(\mathcal{A}, x)}.$$

This is good for showing lower bounds, like “no randomized algorithm has an approximation factor better than c”. To prove this, you can construct a distribution over inputs and show that every deterministic algorithm does worse than c on this distribution.

Principle of Deferred Decisions. If you have a randomized algorithm or are e.g. building a randomized graph, avoid constructing or reasoning about realizations of a particular piece until your algorithm/analysis touches it. For example, when traversing a random graph, you don’t need to reason about the probability of all possible realized graphs, just realizations of the nodes and edges your traversal touches.
References
