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Learning from Expert Advice

In the last several lectures, we have seen several games in which best response dynamics inevitably
converges to a Nash equilibrium; however, there are also plenty of games for which best response dynamics
does not converge (even if they have pure strategy Nash equilibria!). In such games, what should players
do? What should we expect to happen? And how should we compute equilibria?

In this lecture, we will introduce a model of a single agent repeatedly making decisions and observing
feedback over time. This can capture playing a game repeatedly, but it can also apply to more general
scenarios. So for a while, we will move away from considering games and consider this more general
problem. Then, we will come back and see how it can be useful for games.

As a simple example to keep in mind, consider the following toy model of predicting the stock market:
every day the market goes up or down, and you must predict what it will do before it happens (so that
you can either buy or short shares). You don’t have any information about what the market will do,
and it may behave arbitrarily, so you can’t hope to do well in an absolute sense. However, every day,
before you make your prediction, you get to hear the advice of a bunch of experts, who make their
own predictions. These “experts” may or may not know what they are talking about, and you start off
knowing nothing about them. Nevertheless, you want to come up with a rule to aggregate their advice
so that you end up doing (almost) as well as the best expert (whomever she might turn out to be) in
hindsight. Sounds tough.

Lets start with an even easier case:

• There are N experts who will make predictions in T rounds.

• At each round t, each expert i makes a prediction pti ∈ {U,D} (up or down).

• We (the algorithm) aggregate these predictions somehow, to make our own prediction ptA ∈ {U,D}.
Then we learn the true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e. ptA 6= ot), then we
made a mistake.

• To make things easy, we will assume at first that there is one perfect expert who never makes a
mistake (but we don’t know who she is).

Can we find a strategy that is guaranteed to make at most log(N) mistakes?
We can, using the simple halving algorithm!

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do

Let St
U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St

D = St \ St
U be the set

who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Its not hard to see that the halving algorithm makes at most logN mistakes under the assumption
that one expert is perfect:

Theorem 1 If there is at least one perfect expert, the halving algorithm makes at most logN mistakes.
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Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some
round t, at least half of the remaining experts have made a mistake and are eliminated, and hence
|St+1| ≤ |St|/2. On the other hand, the perfect expert is never eliminated, and hence |St| ≥ 1 for all t.
Since |S1| = N , this means there can be at most logN mistakes.

Not bad – logN is pretty small even if N is large (e.g. if N = 1024, logN = 10, if N = 1, 048, 576,
logN = 20), and doesn’t grow with T , so even with a huge number of experts, the average number of
mistakes made by this algorithm is tiny.

What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to
make not too many more than OPT mistakes?

The first approach you might try is the iterated halving algorithm:

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do
If |St| = 0 Reset: Set St ← {1, . . . , N}.
Let St

U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St
D = St \ St

U be the set
who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Theorem 2 The iterated halving algorithm makes at most log(N)(OPT + 1) mistakes.

Proof As before, whenever the algorithm makes a mistake, we eliminate half of the experts, and so
the algorithm can make at most logN mistakes between any two resets. But if we reset, it is because
since the last reset, every expert has made a mistake: in particular, between any two resets, the best
expert has made at least 1 mistake. This gives the claimed bound.

We should be able to do better, though. The iterated halving algorithm is wasteful in that every
time we reset, we forget what we have learned! The weighted majority algorithm can be viewed as a
“softer” version of the halving algorithm: rather than eliminating experts who make mistakes, we just
down-weight them:

Algorithm 3 The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t

U =
∑

i:pt
i=U wi be the weight of experts who predict up, and W t

D =
∑

i:pt
i=D wi be the weight

of those who predict down.
Predict with the weighted majority vote: If W t

U > W t
D, predict ptA = U , else predict ptA = D.

Down-weight experts who made mistakes: For all i such that pti 6= ot, set wt+1
i ← wt

i/2
end for
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