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Correlated Equilibria

Consider the following two player traffic light game that will be familiar to those of you who can drive:

STOP GO
STOP 0,0 0,1

GO 1,0 -100,-100

This game has two pure strategy Nash equilibria: (GO,STOP), and (STOP,GO) – but these are
clearly not ideal because there is one player who never gets any utility.

There is also another mixed strategy Nash equilibrium: Suppose player 1 plays (p, 1 − p). If the
equilibrium is to be fully mixed, player 2 must be indifferent between his two actions – i.e.:

0 = p− 100(1− p)⇔ 101p = 100⇔ p = 100/101

So in the mixed strategy Nash equilibrium, both players play STOP with probability p = 100/101,
and play GO with probability (1 − p) = 1/101. This is even worse! Now both players get payoff 0 in
expectation (rather than just one of them), and risk a horrific negative utility. The four possible action
profiles have roughly the following probabilities under this equilibrium:

STOP GO
STOP 98% <1%

GO <1% ≈ 0.01%

A far better outcome would be the following, which is fair, has social welfare 1 (this means the
expected sum of the players’ utilities is 1), and doesn’t risk death:

STOP GO
STOP 0% 50%

GO 50% 0%

But there is a problem: there is no set of mixed strategies that creates this distribution over action
profiles. Therefore, fundamentally, this can never result from Nash equilibrium play.

The reason however is not that this play is not rational – it is! The issue is that we have defined Nash
equilibria as profiles of mixed strategies, that require that players randomize independently, without any
communication. In contrast, the above outcome requires that players somehow correlate their actions.

Drivers of course do this all the time – the correlating device is a traffic light. The traffic light
suggests to each player whether to STOP or GO, and (at least when roads are busy), conditioned on
the advice it gives you following its advice is a best response for everyone involved.

Now, our goal is to generalize this into an equilibrium concept. Our definitions of equilibria always
look like this: “all players prefer following the equilibrium strategies instead of deviating, given that
everyone else is doing so as well.” But in this case, what does it mean to deviate? Well, when the player
sees the suggestion of the traffic light, she can choose to follow it, or to switch to some other action.
In other words, she can deviate to some “swap” function f : Ai → Ai, where when the recommended
action is ai, she instead plays f(ai).

Definition 1 A correlated equilibrium is a distribution D over action profiles A such that for every
player i, and every function f : Ai → Ai:

E
a∼D

[ui(a)] ≥ E
a∼D

[ui(f(ai), a−i)]
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In words, a correlated equilibrium is a distribution over action profiles a such that after a profile a is
drawn, playing ai is a best response for player i conditioned on seeing ai, given that everyone else will
play according to a. For example, in the traffic light game, conditioned on seeing STOP, a player knows
that his opponents see GO, and hence STOP is indeed a best response. Similarly, conditioned on seeing
GO, he knows that his opponents see STOP, and so GO is a best response.

So correlated equilibrium D models the following timing:

1. A signalling device draws an action profile a from D and each player i is told their “assigned
action” ai.

2. Each player i chooses the action they actually play. If D is a correlated equilibrium, then i can
compute that, conditioned on being assigned ai, playing ai maximizes her expected utility assuming
others follow their assigned actions.

Nash equilibria are also correlated equilibria – they are just the special case in which each player’s
actions are drawn from an independent distribution, and hence conditioning on ai provides no additional
information about a−i. But as we saw above, the set of correlated equilibria is richer than the set of
Nash equilibria.

(Notice that a pure-strategy Nash equilibrium a is always a correlated equilibrium, just a boring
one: the distribution puts probability 1 on a, and each player always plays according to a. Similarly, a
mixed-strategy Nash equilibrium p is also a correlated equilibrium, though this is more subtle: action
profile a is drawn with probability p(a) = p1(a1) · · · pn(an). Here it is important that each player sees
only her assigned action, not the assigned actions of everyone else. She can Bayesian update on her
action to a posterior belief about all others’ actions.)

We can define an even larger set still:

Definition 2 A coarse correlated equilibrium is a distribution D over action profiles A such that for
every player i, and every action a′i:

E
a∼D

[ui(a)] ≥ E
a∼D

[ui(a
′
i, a−i)]

The difference is that, in a coarse correlated equilibrium, we only consider deviations of the form “deviate
from following the suggestion, to always playing some fixed strategy a′i regardless of the suggestion.” In
other words, following the recommendation need only be a best response in expectation before seeing
the recommendation ai. This makes sense if you have to commit to following your suggested action or
not up front, and don’t have the opportunity to deviate after seeing it. In other words, the timing is:

1. Each player chooses to either commit to a fixed action a′i, or else to follow the recommendation.

2. A signalling device draws a ∼ D. If i chose to follow the recommendation, she plays the recom-
mended ai; else, she plays the a′i that she picked.

A coarse correlated equilibrium can for example occasionally suggest that players play obviously
stupid actions. Consider the following game, and distribution over action profiles:

A B C
A (1,1) (-1,-1) (0,0)
B (-1,-1) (1,1) (0,0)
C (0,0) (0,0) (-1.1,-1.1)

A B C
A 1/3
B 1/3
C 1/3
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The payoff for each player for playing according to this distribution is:

(1/3) · 1 + (1/3) · 1− (1/3) · 1.1 = 0.3

In contrast the payoff a player would get by playing the fixed action A or B while his opponent randomized
would be:

(1/3) · 1− (1/3) · 1 + (1/3) · 0 = 0

and the payoff for playing C would be strictly less than zero. Hence, the given distribution is a coarse
correlated equilibrium even though conditioned on being told to play C, it is not a best response. This
means that the given distribution is a coarse correlated equilibrium, but not a correlated equilibrium,
proving that coarse correlated equilibria are a strictly larger set of distributions.

To recap, we have so far considered several solution concepts: Dominant strategy equilibria (DSE),
Pure strategy Nash equilibria (PSNE), mixed strategy Nash equilibria (MSNE), correlated equilibria
(CE), and coarse correlated equilibria (CCE), and we know the following strict containments:

DSE ⊂ PSNE ⊂MSNE ⊂ CE ⊂ CCE

where starting at Mixed Nash equilibria, the solution concept is guaranteed to exist (but may still be
hard to find). Next lecture, we want to show that starting at correlated equilibria, not only is the
solution concept guaranteed to exist, but we can always efficiently compute one.
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