
UPenn NETS 412: Algorithmic Game Theory February 15, 2018

Lecture 9
Lecturer: Bo Waggoner Scribe: Aaron Roth, Bo Waggoner

No Regret and Correlated Equilibria

In this lecture, our goal is to see how correlated and coarse correlated equilibria can be found by using
no-regret algorithms such as polynomial weights. We will see that in the case of correlated equilibrium,
we need a new notion called “swap regret”.

First, let’s see what happens if all players in a game are using a “no regret” algorithm such as
polynomial weights. Recall:

Definition 1 Given an n-player game, we say a sequence of action profiles a1, . . . , aT has average
regret ∆(T) if for all i, player i has average regret at most ∆(T) for playing her sequence of actions
a1i , . . . , a

T
i . That is, for all deviations a′i,

1

T

T∑
t=1

ui(a
′
i, a

t
−i) −

1

T

T∑
t=1

ui(a
t) ≤ ∆(T).

(Note the slight difference from the notion of regret in previous lectures: Previously, the players wanted
to minimize loss, whereas now they want to maximize utility.)

Theorem 2 If a1, . . . , aT has average regret ∆(T), then the distribution D that uniformly at random
picks one of these action profiles a1, . . . , aT is an (approximate) coarse correlated equilibrium. The
approximation is ∆(T), meaning that every player can improve by at most ∆(T) by deviating.

Proof If player i follows the recommendation a that is drawn from D, her expected utility is

E
a∼D

ui(a) =

T∑
t=1

1

T
ui(a

t).

This uses that each at is chosen with probability 1
T .

If i deviates to a′i, she obtains expected utility

E
a∼D

ui(a
′
i, a−i) =

T∑
t=1

1

T
ui(a

′
i, a

t
−i).

By definition of the average regret of the sequence, she improves by at most ∆(T) by deviating.

Now, suppose we play the game repeatedly T times, where each player uses the polynomial weights
algorithm to choose her actions at each time, based on the previous time steps.1 Then by the re-
gret guarantee of the polynomial weights algorithm, each player i guarantees expected regret at most
2
√

log |Ai|/T . If we let k = maxi |Ai|, then every player i has expected regret at most 2
√

log(k)/T , so

the sequence a1, . . . , aT has average regret at most ∆(T) = 2
√

log(k)/T .
This proves the following corollary.

Corollary 3 By running the polynomial weights algorithm for all players, over T repeated rounds, we
can compute an ∆(T)-approximate coarse correlated equilibrium for ∆(T) = 2

√
log(k)/T , where k is the

maximum number of actions of any player.

1We technically need to first transform the game into an input the polynomial weights algorithm can handle, i.e. so
that every outcome for each action is a loss in [0, 1] rather than a utility. We can do so by scaling and shifting all utilities
by the same amount, then using the negative of utility as the loss for the algorithm.

9-1

So far so good for coarse correlated equilibria. Are there learning algorithms that efficiently con-
verge to correlated equilibrium? A natural approach (by analogy to how we can find coarse correlated
equilibria) is to try and find an experts algorithm that has the following guarantee:

Definition 4 Given an n-player game, we say a sequence of action profiles a1, . . . , aT has average
swap regret ∆(T) if for all players i and all f : Ai → Ai,(

1

T

T∑
t=1

ui(f(ati), a
t
−i)

)
− 1

T

T∑
t=1

ui(a
t) ≤ ∆(T).

To distinguish this notion, we may sometimes refer to our previous definition of regret as “external
regret”.

Now we have:

Theorem 5 If a1, . . . , aT have average swap regret ∆(T), then D that picks among them uniformly is
a ∆(T)-approximate correlated equilibrium.

The proof is exactly analogous to the case of coarse correlated equilibrim.
But: how can we compute a sequence with low average swap regret? The polynomial weights

algorithm doesn’t necessarily guarantee good swap regret.

We recall/rephrase the online learning setting. Suppose there are k actions j = 1, . . . , k, and each
round t, we observe a loss `tj for each action j. The algorithm must pick some action, call it jt at time
t, and receives a loss `tA := `tjt . The average swap regret of the algorithm is

1

T

T∑
t=1

`tA − min
f :Ai→Ai

1

T

T∑
t=1

`tf(jt).

The algorithm is:

1. Initialize k copies of the PW algorithm, one for each action j = 1, . . . , k.

2. At each time t, the copy of PW for action j specified a distribution over actions, call it qtj . Note
that qtj is a probability distribution over all k actions.

3. Combine (in a way described below) all of these distributions into a single distribution pt on
actions. Draw the action jt to play from this distribution, where j is drawn with probability pt(j).

4. The losses `t1, . . . , `
t
k for the actions arrive. However, we do not directly give these losses to all the

copies of the PW algorithm. Instead, the copy for action j receives all these losses scaled down by
pt(j). That is, it receives the losses pt(j)`t1, . . . , p

t(j)`tk.

The above algorithm is fully specified, except for how we combine the k PW distributions qt1, . . . , q
t
k

into a single distribution over actions pt. We do so as follows. We set this distribution to satisfy the
following system of equations: for each j,

pt(j) =

k∑
j′=1

pt(j′)qtj′(j)

The above set of equations have a unique solution (note that there are k linear equations in k unknowns).
How should you think about the solution to this system? It is saying that, once you solve for pt, the

following two ways of picking an action are equivalent:

1. We draw an action j according to pt. That is, each action j is chosen with probability pt(j).

9-2

2. We select a copy j′ of the PW algorithm according to pt. Then we draw an action j according to
that copy of the PW algorithm, i.e. j is chosen with probability qtj′(j).

Theorem 6 The above algorithm achieves, in expectation, average swap regret at most 2k
√

log(k)/T .

Proof Let f : {1, . . . , k} → {1, . . . , k} be any swap function.
We consider the jth copy of PW. Its expected loss at round t is

Lt
A(j) :=

k∑
j′=1

(probability it places on action j′) (loss it observes for j′)

=

k∑
j′=1

qtj(j
′)
(
pt(j)`tj′

)
= pt(j)

k∑
j′=1

qtj(j
′)`tj′ .

Now, by the guarantee of the polynomial weights algorithm, it has low (external) regret. In particular,
it does almost as well as playing the action f(j) every round:

1

T

T∑
t=1

Lt
A(j) ≤

1

T

T∑
t=1

pt(j)`tf(j) + ∆(T)

where, recall, ∆(T) = 2
√

log(k)/T . Now, let us sum both sides over all copies j of the PW algorithm:

1

T

T∑
t=1

k∑
j=1

Lt
A(j) ≤

1

T

T∑
t=1

k∑
j=1

pt(j)`tf(j) + k∆(T). (1)

But what is
∑k

j=1 L
t
A(j)?

k∑
j=1

Lt
A(j) =

k∑
j=1

pt(j)

k∑
j′=1

qtj(j
′)`tj′

=

k∑
j′=1

`tj′

k∑
j=1

pt(j)qtj(j
′)

=

k∑
j′=1

pt(j′)`tj′ .

Here, we used our definition of pt(j). So Equation 1 becomes

1

T

T∑
t=1

k∑
j=1

pt(j)`tj ≤
1

T

T∑
t=1

k∑
j=1

pt(j)`tf(j) + k∆(T).

The left side is the average loss of the algorithm. The right side is the average loss the algorithm would
have suffered, in expectation, by playing f(j) instead of j every time it had played j, for all actions j.
Therefore, this shows that the average swap regret is bounded, in expectation, by

k∆(T) = 2k

√
log(k)

T
.

9-3

