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Information Elicitation Without Verification

In the previous lecture, we looked at proper scoring rules – basic tools for eliiting predictions from
strategic agents. Now, we will use these as tools to elicit information from agents in situations where we
cannot verify the reports.

Imagine there is a group of agents who have each observed some information. We would like to collect
that information truthfully, but we cannot directly verify whether they are being truthful or not.

For instance, perhaps these agents have all gone to the same restaurant and observed some infor-
mation about the restaurant’s quality, such as good/bad or on a 1-to-5 scale. We want to elicit their
true experiences, but we cannot go to all the restuarants ourselves to verify what we are told (and if we
could, then we wouldn’t need the agents in the first place).

As a second example, suppose we are asking a group of agents to label images for us (a common
crowdsourcing task on the web). For each image, each agent observes some information about what is
in the image, then makes a report. We do not have the resources to double-check all of the images, but
we want to elicit truthful reports.

In all these cases, the idea is to have multiple agents completing the same task or reporting their
own observations and score them against each other. If the others are truthful, then these agents will
be truthful as well.

Modeling the game. In this setting, which we will call information elicitation without verification,
we have:

• n agents 1, . . . , n.

• For each agent i, a set of possible signals Si and a utility function ui : S1 × · · · × Sn → R.

• A common prior distribution P over all realizations of all of the signals. For instance P(s1, . . . , sn)
is the probability that agent 1 observes s1, . . . , and agent n observes sn.

The timing of the game is as follows:

1. The signals s1, . . . , sn are drawn jointly from the distribution P.

2. Each player i observes her signal si.

3. Each player i makes a report ŝi possibly different from si.

4. Each player i gets a utility ui(ŝ1, . . . , ŝn).

The question is: how do we design the utility functions u1, . . . , un so that players all want to report
truthfully?

Solution concept. This game is a bit different from others we have seen because it involves the
signals, which are randomly drawn. Each player is not completely certain what information the others
hold. We need a new definition of equilibrium to capture this setting. This definition can be extended
to more general games of incomplete information, but we will focus on information elicitation without
verification.

In this game, the actions Ai of player i consist of all functions ai : Si → Si. In other words, player i
decides on a function that takes in her observed signal si and outputs her reported signal ŝi. One function
is the “truthful” function, which always reports the signal truthfully. Note that, given a strategy profile
a1, . . . , an, player i’s expected utility can be written Eui(a1(s1), . . . , an(sn)) where the expectation is
taken over s1, . . . , sn ∼ P .
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Definition 1 A strategy profile a1, . . . , an is a Bayes-Nash equilibrium if, for all players i and all
a′i 6= ai,

E
s1...sn∼P

ui(a1(s1), . . . , an(sn)) ≥ E
s1...sn∼P

ui(a−i(s−i), a
′
i(si)).

It is a strict equilibrium if the inequality is always strict for a′i 6= ai.
It is a truthful equilibrium if every ai is truthful, i.e. the identity function.

Example and output agreement. A simple example is output agreement. Suppose there are two
players who each observe the same signal, for instance, they are both asked to provide a label for an
image. They are both rewarded with 1 if they report the same signal, and they both get 0 otherwise.

This might sound like a reasonable approach. For example, consider the restaurant setting. Let’s
say there are two agents, Alice and Bob. And say there are two signals, Like and Dislike. Alice and Bob
each go to the restaurant and observe a signal, then report it. Under output agreement, they each get 1
if they both report the same thing, otherwise 0. In particular, for both i = Alice and i = Bob we have

ui(Like,Like) = ui(Dislike,Dislike) = 1

ui(Dislike,Like) = ui(Like,Dislike) = 0

But this is not always truthful! Consider the following prior distribution on signals:

• P(Dislike,Dislike) = 0.02

• P(Like,Dislike) = P(Dislike,Like) = 0.24

• P(Like,Like) = 0.5.

It’s worth thinking about what this prior encodes. It says that we all expect that the restaurant will
be quite good. In fact, with probability 0.5, we expect both agents to like the restaurant. Each player
alone has a total probability of 0.74 of liking the restaurant and only 0.26 of disliking it.

Now we can compute the best responses for each player as follows. If Alice observes her signal is
Like, then her posterior belief is, using Bayes’ rule,

Pr [sBob = Like | sAlice = Like] =
0.5

0.5 + 0.24

=
25

37
.

Pr [sBob = Dislike | sAlice = Like] =
0.24

0.5 + 0.24

=
12

37
.

Suppose Bob is reporting truthfully, i.e. Bob always reports the signal he observes. Is it a strict best
response for Alice to report truthfully? When she observes the signal Like, she believes there is a 25

37
chance Bob is reporting Like and only a 12

37 chance Bob is reporting Dislike. So she gets expected payoff
25
37 for reporting Like truthfully, and only 12

37 expected payoff for misreporting Dislike instead. So when
Alice observes Like, she best-responds by being truthful.

But what about when observing Dislike? Then her posterior belief is

Pr [sBob = Like | sAlice = Dislike] =
0.24

0.24 + 0.02

=
12

13
.

Pr [sBob = Dislike | sAlice = Dislike] =
0.24

0.24 + 0.02

=
1

13
.

14-2



So if Bob is reporting truthfully, when Alice observes Dislike, she believes Bob has a 12
13 chance of

reporting Like. So Alice is better off misreporting Like!
We have shown by counterexample:

Fact 2 Output agreement sometimes has no truthful equilibria.

Peer prediction. We can design a truthful mechanism using our knowledge of proper scoring rules.
The peer prediction mechanism, proposed by Miller, Resnick, and Zeckhauser in 2005, works as follows
for two agents.

1. Alice reports a signal ŝAlice.

2. The mechanism calculates the posterior distribution pAlice on Bob’s signal, conditioned on sAlice =
ŝAlice.

3. Meanwhile, Bob reports a signal ŝBob.

4. Alice’s utility is
uAlice(ŝAlice, ŝBob) = S(pAlice, ŝBob)

where S is a strictly proper scoring rule.

5. Symmetrically, the mechanism calculates Bob’s posterior distribution pBob on Alice’s signal con-
ditioned on his report, and Bob’s utility is

uBob(ŝAlice, ŝBob) = S(pBob, ŝAlice).

We make a small assumption on the prior distribution of signals: Each of Alice’s signals produces a
different posterior belief on Bob’s signals; and symmetrically for Bob.

Theorem 3 Under the above assumption, the peer prediction mechanism has a strict, truthful Bayes-
Nash equilibrium.

Proof Fix a player, say Alice without loss of generality, and suppose the other player is playing
truthfully. We must show that it is a best response for Alice to play truthfully, and any other strategy
gives strictly less utility.

If Bob is reporting truthfully, then Alice’s utility will be

ui(ŝAlice, sBob) = S(pAlice, sBob).

Because S is a strictly proper scoring rule, Alice maximizes this utility when pAlice is equal to her true
belief, i.e. her posterior distribution on sBob conditioned on her true signal sAlice. Furthermore, plugging
in any other value for pAlice would give her strictly worse expected score.

But Alice can achieve this maximum utility only by reporting ŝAlice = sAlice, i.e. reporting truthfully.
In this case, her true belief will be plugged in to the scoring rule, but for any other report, a different p
will be plugged in, resulting in strictly worse expected score.

Notice that this mechanism only worked for two agents. This is however quite easy to fix: we can
split the agents up into pairs if there are more than two, or even do more fancy things such as choosing,
for each Alice, a random “reference report” Bob and scoring her prediction on that report.

A more serious drawback with this method is that it needs to know the common prior distribution that
the signals are drawn from. This might not always be realistic. There has been a significant amount
of research on weakening this assumption either by requesting more information from the agents, by
considering several different tasks simultaneously, or so on.
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