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The Price of Anarchy and Stability

Now we’ll transition to questions in mechanism design, where we design or change games so that,
when agents play an equilibrium, good things happen. We saw some examples of good things in matching
and voting; one was Pareto optimality. But now we will make things more quantitative. What can we
say about the quality of the outcome that has been reached?

This is where the price of anarchy and price of stability come in. They measure how bad things
can and must get respectively, when players play according to an equilibrium. We will focus on Nash
equilibrium, but more generally, it makes sense to study the price of anarchy and stability over any class
of equilibria.

In order to talk about the quality of a game state, we must define what our objective function is.
Recall that a game has n agents, each with a utility function u;(a) giving the utility when the action
profile is a = (aq,...,a,). We will give one definition for games with utilities and one for
games with costs. It is important to know which context you are in.

In this case, games with utility functions that players want to maximize, the objective is

SW(a) = Z u;(a)

and this is often called the social welfare for action profile a. One goal in designing a game is to maximize
this objective. When agents play according to the mixed strategy profile p = (p1,...,pn), then we can
extend the definition to

SW(p) = Z i (p)

where, recall, u;(p) is player i’s expected utility when every plays according to p. We also refer to this
as (expected) social welfare.
Given this objective, define OPT to be the optimal value, i.e.

OPT = max SW(a).

This is the quality of the solution we could obtain if we had dictatorial control, and could mandate the
action that everyone took.

On the other hand, in a game, players can make decisions independently, and we are interested in
how much worse things can be in rational solutions. In other words: How much worse are all stable
(equilibrium) strategy profiles? This is the price of stability. Formally:

Definition 1 Let G be a game with nonnegative utility functions and let NE(G) be the set of its Nash
equilibria. The price of stability of G is

max,ene(c) SW(p)
OPT

PoS =

Notice we required the utility functions to be nonnegative, because otherwise, one could have a negative
ratio, which doesn’t make much sense. The PoS for games with utilities is always between 0 and 1, with
1 meaning that equilibria can achieve the optimal welfare. So it measures the fraction of the optimal
welfare that is obtained at equilibrium (in the best case).
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Prisoner’s Dilemma:
Confess | Silent

Confess | (1,1) (5,0)
Silent (0,5) | (3,3)

For example, consider the Prisoner’s Dilemma. OPT = 6 because the social welfare is 3+ 3 = 6
if both players stay silent. However, the only Nash equilibrium is for both players to Confess. In this
case, social welfare is 2. So the Price of Stability of this game is % Notice that PoS is a ratio, so if
we multiplied all utilities in the game by 100, it would not change. However, if we added 100 to all
utilities, it would change. This makes sense: If we add 100 to all utilities, then relatively speaking,
players don’t care very much about the differences between Confess and Silent, and their utility with be

a large percentage of optimal no matter what happens.

Battle of the Sexes:
Football | Opera

Football | (5,1) (0,0)
Opera (0,0) (1,5)

Now consider Battle of the Sexes. It has three Nash equilibria: (F.F), (0,0), and a fully mixed
equilibrium where the row player plays (%, é) while the column player plays (%, %) (Recall this means
that each player independently randomizes, with the row player picking Football with probability % and
the column player picking Football with probability %)

Here we have OPT = 6, which is achieved by the profiles (F,F) and (O,0). Since these are both Nash
equilibria, we have PoS = 1 for this game.

Price of Anarchy. But, continuing the Battle of the Sexes example, what if the players play the
third equilibrium? In this case, they do not get the optimal social welfare. In fact, we can calculate
the expected social welfare when they play the fully mixed equilbrium by taking the probability of each
action profile times the social welfare at that profile:

) 25 1 5 )

The ratio of this value to OPT is only 57/33 = 15—8, which isn’t so great. This is the price of anarchy of the
game.

Definition 2 The price of anarchy of a game G with nonnegative utility functions is

ming,e yp(q) SW(p)
OPT

PoA =

The price of anarchy is the ratio of social welfare of the worst equilibrium to OPT. Notice we have
0< PoA< PoS<1

The price of anarcy measures how much worse things can be compared to OPT, while the price of
stability measures how much worst things must be.

The names are appropriate. The price of anarchy measures how bad things can get if we let everyone
act for themselves — if we have anarchy — and assume only that they are rational enough to reach
equilibrium. In contrast, if we have the power to suggest to players how they should play, we could
suggest that they play the best Nash equilibrium. But if we want our suggestions to be stable, we must
suggest some stable state (i.e. an equilibrium). The price of stability tells us how bad things must be,
even if we get to pick our favorite stable state.
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Games with cost functions instead of utilities. We will also define PoS and PoA for games with
cost functions ¢; : A — R where each player’s objective is to minimize cost. In fact, this is how they are
more frequently defined. It is important, when discussing the terms, to always know which scenario you
are in — a game with utilities or costs!

In a game with costs, the objective is social cost:

n

SC(a) = ci(a).

i=1
We define SC(p) for mixed strategy profiles p the same way. The goal is to minimize social cost, i.e.

OPT = min SC(a)

Definition 3 For a game G with nonnegative cost functions ¢; and Nash equilibria NE(G), we define
the Price of Stability as
mianNE(G) SC(p)

PoS = OPT

and the Price of Anarchy as
maxye NE(G) SC(p)

PoA = OPT

This time, note that
1 < PoS < PoA <

So now the ratio measures how many times worse (or higher) costs are in equilibria than at OPT.

Congestion game example. We will give one quick example, the well-known Braess paradox. Con-
sider the following graph. n agents are trying to travel from the leftmost vertex to the rightmost. Each
has cost equal to their total travel time. On some of the edges the travel time is a constant 1, while on
the others, the travel time is 7"; where k is the total number of agents traveling on that edge.

travel time: #travelers
n

travel time: 1

travel time: 1 .
travel time: #travelers

n

One can verify that the only Nash equilibrium (if n is even) is for half the agents to take the top
path while half take the bottom path. In this case, social cost is %n because everyone’s cost is % This
is also the optimal solution, i.e. OPT = %n, so the price of anarchy and price of stability are both 1.

But now, suppose we add a new edge with zero travel time. One might think that this additional

edge can only improve congestion and shorten travel times.
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travel time: #travelers
n

travel time: 1

travel time: 0

travel time: 1 .
travel time: #travelers

n

However, this is not the case. One can check that, while the socially optimal cost remains %n, it as
an equilibrium when all players follow the new cut-through edge!, leading to a social cost of 2n. The
price of anarchy and, roughly, price of stability now become

2n _ 4
(3/2n 3

Ironically, by adding a new road, we have made the price of stability and total social cost worse!

In general, one can ask how to best design or modify routing graphs and other congestion games.
PoA and PoS are useful concepts for reasoning about such modifications, e.g. a change that greatly
improves OPT may not help much if the PoS also increases.

1To see this, note that if any player is not following the new edge, then she can improve by switching to it, unless she
is the only one.
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