
UPenn NETS 412: Algorithmic Game Theory April 17 2018

Lecture 19
Lecturer: Bo Waggoner Scribe: Bo Waggoner

Truthfulness and Single-Parameter Domains

In this lecture, we discuss truthfulness in auction design, including an important “revelation principle”
and Myerson’s Lemma for single-parameter environments.

Revelation principle. We call the mechanisms defined so far direct-revelation mechanisms because
they ask agents to report their valuation functions. But what about other kinds of mechanisms? In
general, we can define a (non-revelation) mechanism where each agent i has some action space Bi,
the choice rule is Y : B1 × · · · ×Bn → A, and the payment rule is Q : B1 × · · · ×Bn → Rn.

For example, the descending-price auction for a single item starts with a high price, then slowly
lowers it while the bidders observe. At any time, a bidder can shout “Stop”, claim the item, and pay the
current price. Here Bi can be modeled as determining when to claim the item, assuming it is unclaimed.

In this class, we won’t worry too much about non-revelation mechanisms, due to the following
theorem.

Theorem 1 Let (Y,Q) be a non-revelation mechanism with a dominant strategy equilibrium b(v), i.e.
each player i plays bi(vi). Then there exists a direct-revelation mechanism (X,P) with the same choice
and payment rule that is dominant-strategy incentive compatible.

Proof The mechanism (X,P) will work as follows.

1. Ask all agents to report v1, . . . , vn.

2. Compute the actions bi(vi) they would have taken under the mechanism (Y,Q).

3. Compute the choice a = Y (b1, . . . , bn) and payments p = Q(b1, . . . , bn).

So in the end, we have X(v) = Y (b(v)) and P (v) = Q(b(v)).
To see that this is DSIC, consider any deviation v̂i. The mechanism (X,P) will compute some

simulated action b̂i = bi(v̂i). This may be different than bi(vi). Meanwhile, all the other agents
play some b−i. So being truthful gives the outcome (Y (bi, b−i), Q(bi, b−i) while misreporting gives

(Y (b̂i, b−i), Q(b̂i, b−i)). By assumption, the mechanism Y, P had a dominant strategy of bi, so deviating

to b̂i cannot improve i’s utility.

Corollary 2 Any welfare achievable in dominant strategy equilibrium by a non-revelation mechanism
is also achievable in a direct-revelation DSIC mechanism.

In fact, one can extend this principle further to equilibria that are not dominant strategy, but you
get the idea.

Truthfulness in single-parameter environments. So we can only worry about truthful mecha-
nisms, but how do we design those in general? Here, we’ll look at a pretty general environment called
single-parameter settings.

Definition 3 (Single Parameter Domain) A single parameter domain is a mechanism-design
setting where:

1. We can write each alternative a ∈ A as a = (a1, . . . , an) where ai is interpreted as the “amount”
that i gets when a is selected.

19-1

2. Each valuation function can be captured by a real number wi, interpreted as i’s “value per unit”
amount that i gets.

Thus, i’s utility for outcome o = (a, p) is wiai − pi.

Many things are single parameter domains. For example:

1. Single item auctions. We already know that agent i prefers to win the item than to lose it – all
that needs to be specified is how much agent i values the item. Here the set of alternatives A looks
like all vectors of the form (0, 0, 1, 0, . . . , 0). That is:

ai =

{
1, i wins the item
0, otherwise.

2. Selling a divisible item. The seller has, say, a liter of ice cream and can split it among the agents
in any way. Agent i has utility wi per liter of ice cream (suppose it is linear for the sake of the
example). Here a consists of all vectors (a1, . . . , an) that sum to one liter, where ai is the amount
of ice cream allocated to i.

3. Randomized single-item auctions. Suppose that, given a set of bids, the auctioneer may decide to
allocate the item randomly. The set of alternatives A = ∆n, the set of probability distributions over
n agents. The agent’s value for a = (a1, . . . , an) is her expected value, or wi times the probability
of getting the item: wiai.

4. Buying a path in a network: In this problem, agents correspond to edges in a network, and
will experience some cost if they are used. The mechanism would like to buy service from a set of
agents that form a path in the network, to optimize some objective (minimize social cost, maximize
throughput, etc.) Here an alternative a is a set of edges and:

ai =

{
1, i’s edge is in A;
0, otherwise.

5. Job Scheduling: In this problem, the agents correspond to machines i, each of whom has a different
cost ci for running one unit of computation. Jobs j have different sizes `j (i.e. a job that would cost
machine i `j · ci to run), and the task is to allocate jobs to machines to optimize some objective.
We write xij = 1 if job j is allocated to machine i. Then:

ai =
∑
j

xij`j

Now, we want to understand all DSIC mechanisms in single-parameter domains. To do this, we will
use a similar argument to that we used to characterize truthful proper scoring rules.

Fix all reports w−i of agents except i. Let us use the notation ai(wi), pi(wi) as shorthand for the
amount and payment for i when she reports wi. More formally, we have

ai(wi) = X(wi, w−i)i

pi(wi) = P (wi, w−i)i.

Then we can define i’s utility for reporting ŵi when her true value is wi:

ui(ŵi;wi) = wiai(ŵi)− pi(ŵi).

19-2

75
wi = agent’s value per unit

utility

g(wi)

second price auction
highest bid for j ≠ i: 75

ui(a ; wi) = 0
for all a < 75

ui(a ; wi) = wi - 75
for all a > 75

Figure 1: Illustrating Lemma 4 with a second-price auction where the highest bid was 75 from all
bidders except i. All of i’s bids map to two possibilities: if i bids anything a ≤ 75, then she doesn’t get
the item. So she gets utility ui(a;wi) = 0 no matter what her value wi is (horizontal blue line). If she
bids anything a ≥ 75, she gets the item and pays 75, so she gets utility ui(a;wi) = wi − 75 (other blue
line).

Lemma 4 The mechanism (X,P) is DSIC if and only if, for all fixed w−i, there exists a convex function
g : R≥0 → R such that

ui(ŵi;wi) = g(ŵi) +
dg(v̂i)

dŵi
(wi − ŵi) .

(Note: to be technically formal, dgi
dŵi

should be a subgradient rather than a derivative, but we won’t be
picky about this.)

Proof “Only if” direction: We must show that any DSIC mechanism satisfies the above. For each
fixed report ŵi, the function ui(ŵi; ·) is an affine function of its second argument, i.e. linear plus a
constant. An agent with valuation wi best-responds by picking the report with maximum utility, which
is the maximum over these affine functions, so

g(wi) := ui(wi;wi) = max
ŵi

ui(ŵi;wi).

Because g is a maximum over affine functions, it is a convex function. Furthermore, the line ui(ŵi; ·) is

tangent to g at ŵi, so we can write ui(ŵi;wi) = g(ŵi) + dg(ŵi)
dŵi

(wi − ŵi).
“If” direction: Suppose that, for each fixed w−i, there exists a convex g such that ui(ŵi;wi) of the

form given. Then the agent’s best response by definition is arg maxŵi ui(ŵi;wi). As noted above, each
ui(ŵi; ·) is an affine function and the maximum of them at wi is ui(wi; ·). So this mechanism is DSIC,
that is, for every action of the other players, truthfulness is a best response.

This implies the more famous characterization:

Theorem 5 (“Myerson’s Lemma”) The allocation rule X can be implemented as part of a DSIC
mechanism if and only if, for each fixed bids w−i of agents other than i, ai(ŵi) is monotone increasing.
If so, it can be truthfully implemented only by the payment rule of the form

pi(ŵi) = C + ai(ŵi)ŵi −
∫ ŵi

0

ai(z)dz

for some constant C depending only on the other bids.

19-3

ui(2 ; wi)

ui(50 ; wi)

ui(100 ; wi)

2 50
wi = agent’s value per unit

100

utility

2 50
wi = agent’s value per unit

100

utility

g(wi)

Figure 2: Illustrating Lemma 4 in some more general setting.

Proof Recall that

ui(ŵi;wi) := wiai(ŵi)− pi(ŵi)

We have from the above lemma that a mechanism with this pair ai, pi is truthful mechanism if and only
if

ui(ŵi;wi) = g(ŵi) +
dg(ŵi)

dŵi
(wi − ŵi)

for some convex function g. Putting these together, we get that

ai(ŵi) =
dg(ŵi)

dŵi

and

pi(ŵi) =
dg(ŵi)

dŵi
ŵi − g(ŵi)

= ai(ŵi)ŵi −
∫ ŵi

0

ai(z)dz.

(We are omitting some technicalities, but one can assume some niceness or generalize the proof to get
rid of them.)

Now, there exists a convex function g with ai = dg
dŵi

if and only if ai is monotone increasing (this is
one definition of convex function). This proves the result.

19-4

