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Truthfulness and Single-Parameter Domains

In this lecture, we discuss truthfulness in auction design, including an important “revelation principle”
and Myerson’s Lemma for single-parameter environments.

Revelation principle. We call the mechanisms defined so far direct-revelation mechanisms because
they ask agents to report their valuation functions. But what about other kinds of mechanisms? In
general, we can define a (non-revelation) mechanism where each agent 7 has some action space B;,
the choice ruleis Y : By x -+ x B,, — A, and the payment ruleis Q : B; X --- x B,, — R".

For example, the descending-price auction for a single item starts with a high price, then slowly
lowers it while the bidders observe. At any time, a bidder can shout “Stop”, claim the item, and pay the
current price. Here B; can be modeled as determining when to claim the item, assuming it is unclaimed.

In this class, we won’t worry too much about non-revelation mechanisms, due to the following
theorem.

Theorem 1 Let (Y,Q) be a non-revelation mechanism with a dominant strategy equilibrium b(v), i.e.
each player i plays b;(v;). Then there exists a direct-revelation mechanism (X, P) with the same choice
and payment rule that is dominant-strategy incentive compatible.

Proof The mechanism (X, P) will work as follows.
1. Ask all agents to report vy, ..., v,.
2. Compute the actions b;(v;) they would have taken under the mechanism (Y, Q).
3. Compute the choice a = Y (by,...,b,) and payments p = Q(b1,...,by).

So in the end, we have X (v) = Y (b(v)) and P(v) = Q(b(v)).

To see that this is DSIC, consider any deviation ;. The mechanism (X, P) will compute some
simulated action b; = b;(v;). This may be different than b;(v;). Meanwhile, all the other agents
play some b_;. So being truthful gives the outcome (Y (b;,b_;),Q(b;,b—;) while misreporting gives
(Y(Ei, b_;), Q(Ei, b_;)). By assumption, the mechanism Y, P had a dominant strategy of b;, so deviating

to b; cannot improve ¢’s utility. W

Corollary 2 Any welfare achievable in dominant strategy equilibrium by a non-revelation mechanism
is also achievable in a direct-revelation DSIC mechanism.

In fact, one can extend this principle further to equilibria that are not dominant strategy, but you
get the idea.

Truthfulness in single-parameter environments. So we can only worry about truthful mecha-
nisms, but how do we design those in general? Here, we’ll look at a pretty general environment called
single-parameter settings.

Definition 3 (Single Parameter Domain) A single parameter domain is a mechanism-design
setting where:

1. We can write each alternative a € A as a = (a1, ...,a,) where a; is interpreted as the “amount”
that © gets when a s selected.
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2.

Fach valuation function can be captured by a real number w;, interpreted as i’s “value per unit”
amount that i gets.

Thus, i’s utility for outcome o = (a,p) is w;a; — p;.

Many things are single parameter domains. For example:

1.

Single item auctions. We already know that agent ¢ prefers to win the item than to lose it — all
that needs to be specified is how much agent ¢ values the item. Here the set of alternatives A looks
like all vectors of the form (0,0, 1,0,...,0). That is:

o — { 1, ¢ wins the item
‘1 0, otherwise.
Selling a divisible item. The seller has, say, a liter of ice cream and can split it among the agents
in any way. Agent ¢ has utility w; per liter of ice cream (suppose it is linear for the sake of the
example). Here a consists of all vectors (aq,...,a,) that sum to one liter, where a; is the amount
of ice cream allocated to 1.

Randomized single-item auctions. Suppose that, given a set of bids, the auctioneer may decide to
allocate the item randomly. The set of alternatives A = A,,, the set of probability distributions over
n agents. The agent’s value for @ = (ay,...,a,) is her expected value, or w; times the probability
of getting the item: w;a;.

Buying a path in a network: In this problem, agents correspond to edges in a network, and
will experience some cost if they are used. The mechanism would like to buy service from a set of
agents that form a path in the network, to optimize some objective (minimize social cost, maximize
throughput, etc.) Here an alternative a is a set of edges and:

o — 1, i’s edgeisin A;
‘71 0, otherwise.

Job Scheduling: In this problem, the agents correspond to machines ¢, each of whom has a different
cost ¢; for running one unit of computation. Jobs j have different sizes ¢; (i.e. a job that would cost
machine i ¢; - ¢; to run), and the task is to allocate jobs to machines to optimize some objective.
We write x;; = 1 if job j is allocated to machine ¢. Then:

a; = E ﬂiijgj
J

Now, we want to understand all DSIC mechanisms in single-parameter domains. To do this, we will
use a similar argument to that we used to characterize truthful proper scoring rules.

Fix all reports w_; of agents except i. Let us use the notation a;(w;), p;(w;) as shorthand for the
amount and payment for ¢ when she reports w;. More formally, we have

al(wz) = X(wl, w,i)i

pi(w;) = Plwi, w_;);.

Then we can define i’s utility for reporting w; when her true value is w;:

wi (W5 w;) = wia;(W;) — pi(W;).
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second price auction
highest bid forj #i: 75

utility

u(a;w)=w-75
foralla>75

g(w;)

/f'5 u(a;w)=0

i
w, = agent’s value per unit foralla<75

/

Figure 1: Illustrating Lemma 4 with a second-price auction where the highest bid was 75 from all
bidders except i. All of i’s bids map to two possibilities: if ¢ bids anything a < 75, then she doesn’t get
the item. So she gets utility u;(a;w;) = 0 no matter what her value w; is (horizontal blue line). If she
bids anything a > 75, she gets the item and pays 75, so she gets utility w;(a;w;) = w; — 75 (other blue
line).

Lemma 4 The mechanism (X, P) is DSIC if and only if, for all fired w_;, there exists a convex function

g:R>9 — R such that

dg(d;)
dw;

wi (Wi w;) = g(w;) + (w; — ) .

dgi
7 dw;

(Note: to be technically formal should be a subgradient rather than a derivative, but we won’t be

picky about this.)

Proof “Ounly if” direction: We must show that any DSIC mechanism satisfies the above. For each
fixed report w;, the function wu;(w;;-) is an affine function of its second argument, i.e. linear plus a
constant. An agent with valuation w; best-responds by picking the report with maximum utility, which
is the maximum over these affine functions, so

g(w;) = ui(w;; w;) = max u; (W; w;).

w;

Because g is a maximum over affine functions, it is a convex function. Furthermore, the line w;(w;;-) is
tangent to g at w;, so we can write u;(w;; w;) = g(;) + % (w; — ).

“If” direction: Suppose that, for each fixed w_;, there exists a convex g such that u;(w;;w;) of the

form given. Then the agent’s best response by definition is arg maxg, u;(w;; w;). As noted above, each

u;(y;-) is an affine function and the maximum of them at w; is w;(w;;-). So this mechanism is DSIC,
that is, for every action of the other players, truthfulness is a best response. l

This implies the more famous characterization:

Theorem 5 (“Myerson’s Lemma”) The allocation rule X can be implemented as part of a DSIC
mechanism if and only if, for each fized bids w_; of agents other than i, a;(w;) is monotone increasing.
If so, it can be truthfully implemented only by the payment rule of the form

pi(w;) = C + a;(;)w; — /sz a;(2)dz

for some constant C depending only on the other bids.
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Figure 2: Ilustrating Lemma 4 in some more general setting.

Proof Recall that
wi (Wi w;) = wia; (W;) — pi(w;)

We have from the above lemma that a mechanism with this pair a;, p; is truthful mechanism if and only

if

dg(w;)
dw;

u (W35 w;) = g(w;) + (w; — ;)

for some convex function g. Putting these together, we get that

oy dg(;)
ai(hi) = =3
and
~y_ dg(wg) .
pl(wl) dwz w'L g(wl)

(We are omitting some technicalities, but one can assume some niceness or generalize the proof to get
rid of them.)

Now, there exists a convex function g with a; = j—ﬁ’i if and only if a; is monotone increasing (this is
one definition of convex function). This proves the result. l
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