
UPenn NETS 412: Algorithmic Game Theory
Midterm Practice Problems

Instructor: Bo Waggoner

Problem 1

Here we’ll analyze a game where each player has infinitely many choices of actions.
Alice and Bob are working on a project together. They both value their free-time, which

they give up for working on the project. Let xa represent the fraction of the day (expressed
as a real value in [0, 1]) Alice spends on the project and xb the fraction of the day Bob spends.
The value of the outcome of the project is given by 4x1x2, and Alice and Bob split this
quantity equally. The payoff to each player is the value of the outcome of the project minus
the effort that player put it.

Part a Write Alice’s payoff as a function of xa and xb.

ua = · · · · · · · · ·

Solution. We have

ua =
1

2
4xaxb − xa = 2xaxb − xa = xa(2xb − 1)

All of these are equivalent.

Part b Write Bob’s payoff as a function of xa and xb.

Solution. Symmetrically,

ub =
1

2
4xaxb − xb = 2xaxb − xb = xb(2xa − 1)

Part c If Bob puts in effort xb = .75, what is Alice’s best-response?

Solution. If xb = .75, we have ua = xa(2(.75)− 1) = 0.5xa. The derivative with respect to
xa is dua

dxa
= 0.5. So Alice’s utility only gets bigger the more we increase xa, so Alice should

choose xa as large as possible. Thus she should pick xa = 1.

Part d Now, if Alice is putting in effort xa = 1, what is Bob’s best-response?

1



Solution. If xa = 1, ub = xb(2(1)− 1) = xb. Again, this only gets bigger as we increase xb,
so Bob should pick xb = 1.

Part e Why is xa = xb = 1 a Nash equilibrium of this game?

Solution. We just saw that xb = 1 is Bob’s best-response to xa = 1, and by symmetry
xa = 1 is Alice’s best-response to xb = 1.

Part f Now, if Alice is putting in effort xa = .25, what is Bob’s best-response?

Solution. We have ub = xb(2(.25)− 1) = xb(−.5). This only gets smaller as we increase
xb, or equivalently only gets larger as we decrease xb, so Bob wants to pick xb as small as
possible, so he should pick xb = 0.

Part g What is Alice’s best-response to Bob’s choice of xb = 0?

Solution. If xb = 0, then we have ua = xa(2(0)− 1) = −xa. Again, this only gets bigger as
we decrease xa, so Alice should pick xa = 0.

Part h Why is xa = xb = 0 a Nash equilibrium?

Solution. We just saw that xa = 0 is Alice’s best-response to xb = 0. By a symmetric
argument, xb = 0 is Bob’s best-response to xa = 0.

Part i What value of xb makes Alice indifferent between all of her possible choices of xa?
Hint: Alice is indifferent between all of her options when her payoff is the same regardless of
her choice of xa.

Solution. Alice’s utility is ua = xa(2xb − 1). So dua

dxa
= 2xb − 1. Observe that if Bob sets

xb = .5, then 2(xb)− 1 = 0. In this case, regardless of her choice of xa, Alice’s utility doesn’t
change (in fact, her utility equals zero for any choice of xa.) So xb = 5.

Part j Why is xa = xb = .5 a Nash equilibrium?

Solution. We just saw that at xb = .5, Alice is indifferent between all of her choices of xa,
so every one of her choices, including xa = .5 is a best-response to xb = .5. Symmetrically for
Bob, he is indifferent between all of his choices when xa = .5, so every choice of xb, including
xb = .5 is a best-response. Therefore, xa = xb = .5 is a point where Alice and Bob are
best-responding to each other.

2



Problem 2

Traffic is a congestion game played by n players, all starting from a source node S and
traveling along routes represented by directed edges to a common destination node T . Each
player’s action set consists of all paths from A to T .

The delay along any edge (u, v) is equal to the number of players who chose to travel that
edge, which we will write n(u, v). Each player i’s cost is equal to the sum of delays along all
edges in her path.

For parts a and b, consider the following graph. Here, n(S,A) refers to the number of
players who travel along edge (S,A), and so on.

Figure 1: Graph for parts a and b

Part a Suppose n is even. Find a pure strategy Nash equilibrium, and prove that it is an
equilibrium.

Solution. Notice that any path that begins with (S,A) must follow through (A, T ), and
any path that begins with (S,B) must follow through (B, T ). Hence, the only important
choice for a player to make is whether to start with (S,A) or (S,B).

Suppose nA players start with (S,A) and nB start with (S,B). Then a player starting
with SA has total cost

n(S,A) + n(A, T ) = nA + nA

= 2nA.

Similarly, a player starting with (S,B) has total cost 2nB. So a player’s best response will be
to switch if there are fewer players on the other path than hers.

3



So if n is even, we claim that n/2 agents choosing (S,A) and n/2 agents choosing (S,B)
is an equilibrium. In this case nA = nB = n/2, so all players have a payoff of n, and any
player who switched to the other path would do worse.

Part b Suppose n is odd. Find a pure strategy Nash equilibrium, and prove that it is an
equilibrium.

Solution. One pure strategy equilibrium is for nA = (n + 1)/2 players to choose the top
path and nB = (n− 1)/2 players to choose the bottom path. Each player choosing the top
path has cost 2nA = (n + 1). If she switched to the bottom path, then she would have payoff
2(nB + 1) = n + 1, so she is indifferent between switching and staying. (Note that it is
2(nB + 1) because there would be one more person along the bottom path.)

Similarly, if any player on the bottom path switched to the top path, she would get worse
utility (should would get n + 2 instead of n− 1). So this is an equilibrium.

Part c For this part, consider the following graph. Outline the argument that this game
has a pure strategy Nash equilbrium. (You do not have to find it!) You can assume in your
argument that this is a congestion game (it is actually a slight generalization).

Figure 2: Graph for part c

4



Solution. Despite the complexity of this graph, this is basically the same as parts a and b.
Notice that as written, Traffic mirrors the very first example of congestion games we saw
(but did not solve) - network routing. Here is an outline of the argument:

• We can run BRD on a congestion game starting from any strategy profile.

• If BRD halts, it must be on a strategy profile that is a pure strategy Nash equilibrium.

• We can give a potential function for this game, and it decreases monotonically as players
improve their responses to the current strategy profile.

• Since there are only a finite number of actions, the potential function has only a finite
number of values. By this and the previous point, BRD must halt.

Since BRD must halt, and only halts on a pure strategy Nash equilibrium profile, a PSNE
must exist.

Problem 3

In class, we proved that the polynomial weights algorithm achieves “no regret” – that is,
for arbitrary sequences of losses, it guarantees that the difference between the average loss
achieved by the algorithm, and the average loss achieved by the best expert in hindsight is
o(1) – tending to zero as T →∞. Recall that the polynomial weights algorithm is randomized.
Here we show that no deterministic algorithm can obtain the same guarantee.

Part a Consider the algorithm “Follow the Leader” that always picks the expert that has
the lowest cumulative loss so far – i.e. at day j it picks expert k such that:

k = arg min
i

j−1∑
t=1

`ti.

(Suppose for concreteness that if there is a tie, the algorithm picks the min-loss expert with
the smallest index). Show that Follow the Leader is not a no-regret algorithm. i.e. exhibit a
sequence of losses such that for all T , the regret of the algorithm is Ω(T ).

Solution. Consider the case of k = 2 experts and the sequence of loss vectors `1 = (1, 0),
`2 = (0, 1), `3 = (1, 0), . . . where in general, `j = (1, 0) if j is odd and `j = (0, 1) if j is even.
Follow the leader picks expert 1 on odd days and expert 2 on even days, and so experiences
loss 1 every day, for a cumulative loss of LT

FTL = T . On the other hand, each fixed expert
has cumulative loss only LT

1 = LT
2 = T/2. Hence, the total (unnormalized) regret of the

algorithm is T/2, and the total normalized regret is 1/2 – i.e. Follow the Leader is not a no
regret algorithm.

5



Part b Prove that no deterministic experts algorithm can achieve o(1) regret – i.e.
that randomization is necessary to achieve a guarantee like that of the polynomial weights
algorithm.

Hint: Consider any fixed deterministic algorithm, and then place yourself in the role of
an adversary who is trying to foil it. Can you, knowing which expert the algorithm is going
to pick next, design a sequence of losses so that after T rounds, the best expert always has
cumulative loss that is lower than the algorithm’s loss by at least T/2?

Solution. Observe that for any deterministic algorithm, the expert it that the algorithm
chooses at round t is entirely determined by the sequence of losses `1, . . . , `t−1 realized on
days < t. Using this fact, an adversary can inductively construct a series of loss vectors to
guarantee a large gap between the loss of the algorithm and the loss of the best expert in
hindsight. Here is one simple way: At day t, construct the loss vector `t such that `tit = 1,
and `tj = 0 for all experts j 6= it. By construction, the algorithm experiences loss 1 every day
and so has cumulative loss LT

A = T . However, the average cumulative loss of all experts is
only T/k (since only 1 of k experts has nonzero loss each day), and so by averaging, the best
expert in hindsight j∗ must have cumulative loss LT

j∗ ≤ T/k. Hence, the unnormalized regret
of the algorithm is at least (1− 1/k)T , and the normalized regret is at least 1− 1/k – i.e.
not tending to zero with T .

6


