
UPenn NETS 412: Algorithmic Game Theory
Midterm Practice Problems 2

Instructor: Bo Waggoner

Problem 1

Consider a game with two players with action profiles A1 = A2 = {1, ..., 10}. The players get
the same payoff with the function u(s1, s2) = (s1 + s2)/2 if s1 6= s2 and u(s1, s2) = s1 + 1 if
s1 = s2. Basically, the function will average the two values given, but give a bonus for giving
the same numbers.

Part a List all the pure strategy nash equilibria. Justify your answer.

Solution. It is an equilibrium for both players to play 8; for both to play 9; or for both to
play 10. Then they each get a payoff of 9, 10, 11 respectively and either player deviating
cannot improve, e.g. if both play 8 and one deviates, he can at best play 10 and still only
gets a payoff of 9, which is not better.

Nothing else is an equilibrium: If the players play different numbers, then the player with
the lower number can improve by switching to copy the other (this increases the average and
gets the bonus); if both are playing 7 or less, then the other can improve by switching to 10,
which raises the average by more than 1 even though it loses the bonus.

Part b Find a mixed strategy Nash equilibrium that is not a pure strategy equilibrium.

Solution. For example, there is one where both players mix between playing 9 and 10. (If
you haven’t yet found the solution, stop reading and solve it using this hint!)
Suppose the first player plays 9 with probability p and 10 with probability 1− p. Then the
second player’s utility for playing 9 is p(10) + (1− p)(9.5), and for playing 10 is p(9.5) + (1−
p)(11). Setting these equal, so the second player is indifferent to 9 and 10, we get p = 0.75.
Symmetrically, if the second player mixes with probability p = 0.75, then the first player is
indifferent between playing 9 and 10. So both players playing 9 with probability 0.75 and 10
with probability 0.25 is an equilibrium.

Part c Give a correlated equilibrium that is not a pure or mixed strategy equilibrium.

Solution. For example, with probability 0.5 both play 9, with probability 0.5 both play 10.

Part d Consider the distribution D where, for each j = 7, 8, 9, 10, both players play j with
probability 1

4
. Is this a correlated equilibrium? Why or why not?
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Solution. No. To show it isn’t, we just have to find one recommendation where one
player would prefer to deviate. In particular, when both players are recommended action
7, player 1 would rather deviate to playing 10, as in this case she gets 8.5 payoff instead of
8. (More formally, this shows she would rather deviate to the swap function that follows
the recommendation except when she is recommended to play 7, where she deviates to 10
instead.)

Part e Consider the above distribution again. Is it a coarse correlated equilibrium? Why
or why not?

Solution. Yes. We have to show that each player would rather follow than deviate to any
fixed action 1, . . . , 10. If they deviate, then deviating to 10 would be the best deviation since
it’s the largest number and has an equal probability of getting the bonus as 7, 8, 9. But if a
player deviates to 10, she gets

1

4
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7 + 10

2

)
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1

4
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2

)
+

1

4

(
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2

)
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1

4
(11) =
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8
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4
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4

=
38

4
.

Whereas if she follows, she gets

1

4
(8) +

1

4
(9) +

1

4
(10) +

1

4
(11) =

8 + 9 + 10 + 11

4

=
38

4

which is equal. So she cannot gain by deviating, so it is a coarse correlated equilibrium.

Part f Now consider the same game except the payoff if s1 = s2 is s1 − .5. List all the
pure strategy nash equilibria. Justify your answer briefly.

Solution. Both players playing 10 is an equilibrium, as is one player playing 9 and the
other playing 10. In all these cases, both players get payoff 9.5, which is the highest possible
(so any switch only hurts them). No other profile is an equilibrium: If both players play the
same number which is not 10, either can gain by switching to 10 (as the average is higher and
they don’t lose the penalty 0.5). If both players play different numbers and one is playing 10,
the other can gain by switching from their low number to 9. If both players play different
numbers and neither is playing 10, then either can gain by switching to 10.
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Problem 2

You may consult the definition of the polynomial weights algorithm while solving this practice
problem.

Part a Suppose all losses are either 0 or 1, and furthermore, suppose you know there will
be some perfect action that always gets loss 0 (however, you don’t know which action.) What
value would you choose for the parameter ε in the algorithm? Justify your answer. What
algorithm for following expert advice does this remind you of?

Solution. I would set ε = 1.0, so that if an action has a loss of 1, its “weight” gets set
equal to zero and we never pick that action again. All actions with no mistakes so far would
still have weight 1, including the perfect action. This is similar to the Halving algorithm.

Part b Suppose we set ε very small, for example, 1
T

. In a sentence or two: What would
the practical difference be in how the PW algorithm behaves and why might it perform worse
in some settings? (Your answer can be high-level, not involving calculations.)

Solution. It would make very small changes to the actions’ weights, so it would continue
to have a good chance of picking a bad action even after it has suffered a lot of loss.

Part c Suppose we set ε large, for example, 0.1 regardless of T . In a sentence or two:
What would the practical difference be in how the PW algorithm behaves and why might it
perform worse in some settings? (Your answer can be high-level, not involving calculations.)

Solution. It would downweight actions’ weights too quickly; a few bad days would be
enough to totally change the weight of the action relative to the other actions’ weights.
Similarly, an action that initially suffered a few losses would get a very small weight, and
then wouldn’t be picked for a while even if it started performing very well after that.

Problem 3

In this game, each player wants to send flow along a shared channel of maximum capacity 1.
On the one hand, each player wants to send as much flow as possible along the channel. On
the other hand, the channel becomes less useful the closer it gets to its maximum capacity.
Each player can choose to send an amount of flow xi ∈ [0, 1] along the channel. (That is, the
action set for each player i is Ai = [0, 1], and hence is not finite).

Let xi ∈ [0, 1] denote the action of player i. For a profile of actions x ∈ A, let S =
∑n

j=1 xi
be the total flow. Then player i has utility ui(xi, x−i) = xi(1− S).

Note that if the total flow is larger than one, each player has negative utility!
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Part a Show that this game is a potential game with potential function

φ(x) = −S +
1

2
S2 +

1

2

n∑
j=1

x2j .

Hint: One approach is to consider dui
dxi

and dφ
dxi

.

Solution. We have to show that the change in φ is the opposite sign as the change in ui
when i changes his action xi. That is, an increase in ui always corresponds to a decrease in
potential and vice versa.

Note that dS
dxi

= 1. We have

dui
dxi

= (1)(1− S) + xi(−1)

= 1− S − xi.

Meanwhile, differentiating term-by-term (remember the chain rule: d
dxi
S2 = 2S dS

dxi
),

dφ

dxi
= −1 + S + xi.

So dφ
dxi

= −dui
dxi

, so when player 1 changes xi, ui and φ change by opposite signs. (In fact
the changes are equal and opposite, so φ is an exact potential function.)

An alternative approach without calculus is to consider two actions xi, x
′
i and show that

the change is equal for both functions.

Part b Find a Nash equilibrium of this game. What is the social welfare at this equilibrium?
(i.e. the sum of utilities of all the players.)

Solution. This is a symmetric game, so let’s try and find a symmetric Nash equilibrium (in
which all players are playing the same action). Consider player i’s action, and let t =

∑
j 6=i xi.

Player i wants to maximize his utility ui(xi, x−i) = xi(1 − t − xi) = −x2i + (1 − t)xi. By
calculus, we know that ui is maximized by setting xi = (1− t)/2.

This would have to hold for all players, so we get each player is playing some y = (1− t)/2
where t = (n− 1)y. So y = (1− (n− 1)y)/2, so 2y = 1− (n− 1)y, so (n+ 1)y = 1, so every
player is playing xi = y = 1

n+1
. Each player gets utility ui(x) = 1

n+1

(
1− n

n+1

)
= 1

(n+1)2
.

So the social welfare is Σn
i=1ui(x) = n/(n+ 1)2 (Sidenote: this is Θ

(
1
n

)
.)

Part c What is the optimal social welfare? (i.e. what is the social welfare at the profile
of actions that maximizes it, regardless of whether or not this profile is an equilibrium.)
Intuitively, why isn’t this optimum achieved in equilibrium?
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Solution. Each player’s utility is xi(1−S), so the total utility is
∑n

i=1 xi(1−S) = S(1−S).
We can maximize this if S = 1

2
and the optimal value is 1

4
. (For example, every player plays

xi = 1
2n

.) But it’s not achieved in equilibrium because any one player would want to deviate
to increasing her flow.

Problem 4

Consider a game in which there are two firms producing identical goods. Let q1 and q2
represent the quantity of the good produced by each firm. The price at which the goods
can be sold depends on the quantity produced. The price that the firms can charge for their
goods is given as p(q1, q + 2) = a− (q1 + q2), where a is some constant. Finally, each firm
incurs a cost of c for each unit of the good produced. The firms experience no fixed costs, so
the cost of producing a quantity of zero is zero. We’ll assume c < a and that the good is
infinitely divisible, so it makes sense to talk about fractional quantities.

This is called a Cournot game (also Cournot duopoly, or Cournot oligopoloy for more
than two players). The model was developed by Cournot, a mathematician who lived in the
19th century, and Cournot published his model over a century before the emergence of the
field of game theory. This model and its variants are heavily studied in economics.

Part a Write down the profit function of Firm 1 π1 as a function of c, q1, q2, a, where profit
is the revenue of Firm 1 minus the cost of producing the quantity q1 of the good.

Solution.
π1 = (a− (q1 + q2))q1 − cq1 = aq1 − q21 − a1q2 − cq1

Part b Suppose Firm 2 has fixed its quantity at q2. What quantity q1 should Firm 1 pick
to maximize profit? This is Firm 1’s best-response to q2.

Hint: One way to figure this out is to take a derivative of the profit function.

Solution. By taking a derivative and setting it equal to zero, we have that Firm 1 maximizes
its profit by solving

0 =
d

dq1
π1 = a− 2q1 − q2 − c

which happens when

q1 =
1

2
(a− q2 − c)

Part c By symmetry, Firm 2’s best-response function to a choice q1 by Firm 1 is identical
to that of Firm 1, just with the indices swapped. Find the values of q1 and q2 at the Nash
equilibrium (in this game, there is a unique, pure strategy Nash equilibrium).
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Solution. A choice of q∗1 and q∗2 is a Nash equilibrium if and only if the firms are best-
responding to each other. When the firms are best-responding to each other, we should have
that

q1∗ =
1

2
(a− q∗2 − c)

and

q∗2 =
1

2
(a− q∗1 − c)

Let’ plug the expression for q∗2 into Firm 1’s best-response function.

q∗1 =
1

2
(a−

(
1

2
(a− q∗1 − c)

)
− c)

. This is an equation in one unknown, so we can solve it for q∗1. Doing this, we get

q∗1 =
a− c

3

Plugging this in for q∗1 in Firm 2’s best-response function (or just arguing by symmetry),
we get

q∗2 =
a− c

3

Part d What is the market price at the Nash equilibrium?

Solution. The firms together are producing 2a−2c
3

units of the good. Since the price is a
minus the total quantity produced, we get

p = a− 2a− 2c

3
=
a+ 2c

3

Part e How much profit does each firm make?

Solution. At this price and quantity, we get

π1 =

(
a+ 2c

3

)(
a− c

3

)
− ca− c

3
=

(
a− c

3

)2

And symmetrically for Firm 2,

π2 =

(
a− c

3

)2
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Part f Suppose the firms instead colluded and each produced qi = a−c
4

. What would the
market price be? What is the profit of each firm?

Solution. The price is

p = a− (
a− c

2
) =

a+ c

2

. Each firm sees profit

πi =

(
a+ c

2

)(
a− c

4

)
− c

(
a− c

4

)
=

1

2

(
a− c

2

)2

Part g In this collusive case, we see that the profit for each firm is higher than in the
Nash equilibrium. Explain why this collusive agreement is unsustainable. That is, why is
this collusive agreement not a Nash equilibrium?

Solution. Suppose Firm 1 followed through with the collusive agreement and produced
q1 = a−c

4
. Firm 2 can maximize its profit by best-responding to this choice of q1, so Firm 2

picks

q2 =
1

2

(
a− a− c

4
− c
)

=
3(a− c)

8

When Firm 2 deviates like this, the price of the good is p = a − 5(a−c)
8

. Firm 1, which
followed the agreement, gets profit

π1 =

(
a− 5(a− c)

8

)(
a− c

4

)
− ca− c

4
=

3

8

(
a− c

2

)2

Observe that this is less than what Firm 1 would have gotten had Firm 2 stuck by the
agreement.

Firm 2, which deviated, sees profit

π2 =

(
a− 5(a− c)

8

)(
3(a− c)

8

)
− c3(a− c)

8
=

9

16

(
a− c

2

)2

Observe that this is more than what Firm 2 would have gotten by sticking with the
agreement, so it is better off deviating from the agreement. Since Firm 2 is better off by
deviating, the collusive agreement can’t be a Nash equilibrium.
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