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Online Algorithms

In an online setting, the algorithm operates interactively over time. It takes a sequence of inputs
or pieces of information and, at each round, must make a decision or produce some output. Previous
decisions typically cannot be revoked.

The first question that arises is how to evaluate such an algorithm. Since it cannot know the future,
we don’t expect it to perform perfectly; but we would like to understand and prove when an algorithm
is “good”. The idea is to show its performance is comparable to an optimal algorithm that knew the
future in advance. Let us first look at an example.

1 The Ski Rental Problem

A skier goes on a trip of unknown duration with a group. The first day, the skier must choose whether
to rent skis (cost 1) or purchase skis (cost 10). After the first day, the skier learns whether the group
decides the trip is over, or whether it will continue another day.

Each successive day, if the skier has already purchased skis, she can re-use them; if not, she has the
option to either rent again or purchase. Then when that day is over, she learns whether the trip has
ended or it will continue.

The skier doesn’t know when it will end, but would like to spend as little money as possible. We
can compare the amount she spends to the amount spent by an optimal algorithm that knows the entire
trip in advance and knows how many days it will last.

Optimal offline algorithm. The first step for online algorithms is often to figure out what the optimal
offline algorithm is. In this case, if we know the trip will last 10 days or fewer, it is optimal to rent skis
every day. If we know it will last 10 days or longer, it is optimal to immediately buy skis on the first
day. (If it lasts exactly 10 days, both approaches are optimal.)

A 2-competitive algorithm. Once the skis are purchased, there are no more decisions to make. So
this problem boils down to renting the skis for some number of days, then (if the trip has not yet ended),
purchasing.

Suppose the skier rents until the 10th day, then buys. If the trip lasts up to 10 days, this is optimal.
Now suppose it lasts any amount longer than 10 days. Then the skier spends 20, while OPT spends 10.
So the skier never spends more than twice the optimal amount (ratio of 2).

General purchase cost. In general, if renting costs 1 and purchasing costs K > 1, we can give a
2-approximation or 2-competitive algorithm: rent for bKc days, then purchase the next day. If the trip
lasts bKc days or fewer, this is optimal. Otherwise, the algorithm spends bKc + K, while the offline
optimal is to spend just K (by purchasing immediately), for a ratio of

bKc+K

K
≤ 2.

In general, one can show that 2 is the best achievable factor. This means there is no C < 2 such that
we can always guarantee to spend less than C ·OPT , where OPT is the offline optimal.
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2 Competitive Analysis

To evaluate online algorithms, we use the idea of competitive analysis: compare the algorithm’s outputs to
what would have been the optimal choices, had we known the entire future sequence of inputs in advance.
As with approximation algorithms more generally, we will often take the ratio of the performance of the
online algorithm’s solution, compared to the optimal performance on these inputs. For example, in a
minimization problem such as ski rental, we may say the algorithm is C-competitive if it guarantees a
C-approximation to the offline optimum, i.e. ALG ≤ C · OPT for all instances of the problem. For
maximization problems, we may say the algorithm is α-competitive if it guarantees an α approximation
ratio, i.e. ALG ≥ α ·OPT for all instances.

(For this class, we will not be picky about terminology, but it is useful to know that “competitive
analysis” typically refers specifically to online problems, while approximation ratios are more general.)

3 Online Bipartite Matching

In this classic problem, the input is a bipartite graph G = (U, V,E) that arrives over time. The graph
is unweighted and undirected.

Initially, the algorithm is given V , the set of “offline” vertices. It does not know any edges. It begins
with an empty matching M .

Then, vertices u ∈ U arrive one by one. When each arrives, all of its incident edges (u, v) are
revealed. The algorithm may add up to one of these edges to M , provided that it remains a matching.
In particular, if it adds (u, v) to M , then the offline vertex v cannot already be in the matching.

Then the next vertex u′ arrives, and so on.
The goal is to maximize the size of the final matching M . Notice that the algorithm cannot remove

edges from M once they are added, nor can it go back and add edges of vertices that previously arrived.

This problem models many real-world scenarios, at an abstract level. Suppose we are allocating items
(or tasks) to people who arrive one at a time. Each person has a set of items they are compatible with
(or tasks they are qualified for); these represent edges in the graph. We try to assign the person to an
available item that has not yet been matched. We hope to maximize the total number of items assigned
over the course of the day.

In online advertising, companies such as Google and Microsoft have had active research in this
problem as a model for assigning advertisers to slots. Each time a person loads a page, this is modeled
as a vertex arrival. There are edges to all the advertisers who are possible matches for that page (e.g.
athletic companies on a sports page); one of them must be selected to be matched to this page load. In
this simple model, each advertiser has paid for one page load per day (can only be matched once); more
sophisticated models take into account larger budgets.

3.1 Positive results

Maybe not surprisingly, we will use a Greedy algorithm:

• When vertex u arrives, take an arbitrary available edge (u, v), if any exists.

By “available” we mean that v is not already in the matching M .
If we squint carefully, we can see that this is actually an implementation of the greedy algorithm for

offline bipartite matching! Why? Because as the vertices of the graph arrive, the algorithm ends up
iterating through all the edges of the graph, adding each edge it can to its matching. The order of the
edges just happens to be chosen externally. The same proof as before therefore will show its competitive
ratio. We will see a different version of the proof for students who are interested.

Theorem 1. Greedy for online bipartite matching has a competitive ratio of 0.5, i.e. for every input
instance, |M | ≥ 0.5|M∗| where M∗ is a maximum matching.

Proof. Let us build a function f from M to subsets of M∗. For each edge e ∈M , define f(e) to be the
set of all edges in M∗ that share a vertex with e.
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First, we claim that for each e′ ∈M∗, there is some e ∈M such that e′ ∈ f(e). That is, each edge in
the optimal matching overlaps with at least one of Greedy’s edges. Letting e′ = (u, v) be in the optimal
matching, this follows because when u arrived, either v was already matched by Greedy, or else v is
available and in this case u is definitely matched (possibly to v, but at least to some vertex).

Second, we claim |f(e)| ≤ 2, i.e. e overlaps with at most two edges in M∗. This follows because e
has two endpoints, and since M∗ is a matching, each appears in at most one edge of M∗.

These claims imply implies |M∗| ≤ 2|M |. To be very formal, the first claim implies M∗ =
⋃

e∈M f(e).
This implies

|M∗| ≤
∑
e∈M
|f(e)|

≤
∑
e∈M

2 (second claim)

= 2|M |.

3.2 Negative (impossibility) results

In class, we showed that the greedy algorithm for online bipartite matching guarantees a competitive
ratio of 1

2 . Here, we will show impossibility or hardness results for online bipartite matching.

Theorem 2. No deterministic1 algorithm has a competitive ratio of better than 1
2 .

Proof. Let U = {u1, u2}. Consider any algorithm. We consider several instances and show the algorithm
has ratio to OPT of at most half on one of the instances.

Instance A has edge (u2, v1) and (u1, v1) and that is all. The algorithm has three choices when v1
arrives: match the first edge, match the second edge, or make no match. If it makes no matches, its
ratio to OPT on this instance is zero.

So suppose it makes a match on instance A. Without loss of generality, it matches edge (u2, v1). (If
it chooses the other edge, everything that follows can be modified symmetrically.)

So consider instance B with edges (u2, v1), (u1, v1), (u2, v2). The algorithm matches (u2, v1) at round
one when v1 arrives. Then, when v2 arrives, it has no legal options. So its matching has size one, but
the offline optimal has size two. So its competitive ratio is at most 0.5.

Now let us consider online weighted bipartite matching. This is the same problem, but each time an
edge arrives, the algorithm also learns the weight on that edge. The goal is to maximize the total weight
of the matching, and the offline benchmark is the maximum weighted bipartite matching.

Theorem 3. For this online weighted bipartite matching problem, no deterministic algorithm can guar-
antee a competitive ratio of ε, for any ε > 0.

Proof. Let wuv = ε and wuv′ = 1. We have one instance with just edge wuv, and one instance with both
edges arriving in this order. If the algorithm does not take the first arriving edge, then its competitive
ratio on the first instance is zero. But if it does, its ratio on the second instance is ε.

Here we see a large contrast in difficulty of the online problems, even though offline, both the
unweighted and weighted algorithms had greedy 0.5 approximation ratios. However, one can formulate
versions of the weighted problem where constant competitive ratios are possible. For example, one allows
“free disposal” (deleting edges from M later on) or “budgets” on the vertices.

1An algorithm is deterministic if it always behaves the same on the same input.
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4 Online Bin Packing

In the online bin packing problem, items of various weights wj ∈ [0, 1] arrive and must be packed into
bins, each of which can hold total weight 1. The goal is to use the fewest possible bins.

Specifically, in each round j = 1, . . . , T , the algorithm is given wj . The algorithm then selects a bin
i ≥ 0 to place item j into.

Let S[i] be the set of items assigned to bin i. The total weight in bin i is L[i] =
∑

j∈S[i] wj .

Let B be the number of bins that the algorithm used, and B∗ the optimal (minimum) number of
bins used by an optimal algorithm that knows all arrivals in advance.

Consider this simple Greedy algorithm: as each item arrives, place it in any currently-used bin where
it fits. If none, place it in a new bin. We will prove this algorithm guarantees a 2-approximation to the
minimum possible number of bins.

Lemma 1. B∗ ≥
∑T

j=1 wj.

Proof. Assume for contradiction that B∗ <
∑T

j=1 wj . Then the average load of the bins is strictly larger
than 1, so some bin has load larger than 1, a contradiction.

Lemma 2. After running Greedy, all of the nonempty bins are at least half full, except at most one.

Proof. Suppose we have one current bin that’s less than half full, and an item arrives, but we don’t put
it in the bin. Then the item must have weight at least 0.5. So whichever bin it is placed in becomes at
least half full. So we can never have multiple bins that are less than half full.

Lemma 3. Greedy satisfies B − 1 < 2
∑T

j=1 wj.

Proof. There are B − 1 bins that are at least half full. So the total weight is strictly larger than
1
2 (B − 1).

Theorem 4. Greedy is 2-competitive.

Proof. We have B − 1 < 2
∑T

j=1 wj ≤ 2B∗. Since B − 1 < 2B∗ with strict inequality and B,B∗ are
integers, we must have B ≤ 2B∗.

10-4


