
Colorado CSCI 5454: Algorithms October 1 and 3, 2019

Lecture 11-12
Lecturer: Bo Waggoner Scribe: Bo Waggoner

Randomized Algorithms

1 Probability review

Probability space. Sample space: a finite (for now) set Ω of possible outcomes (things that might
happen). Distribution p assigning a number p(ω) ∈ [0, 1] for each ω ∈ Ω with

∑
ω∈Ω p(ω) = 1.

Example: roll two die, possible outcomes are Ω = {(1, 1), (1, 2), · · · , (6, 6)}. Distribution (if both fair
independent die) is p(ω) = 1

36 for all ω.
An event is a subset of outcomes, for example, the event that the sum of the die is 11 or higher is

A = {(5, 6), (6, 5), (6, 6)}.
Because we have a finite discrete sample space, Pr[A] =

∑
ω∈A Pr[ω]. In this example Pr[A] = 3

36 .

Joint probability. Event that A and B both occur: A ∩B.
Example: event that first roll is a 6 is B = {(6, 1), (6, 2), . . . , (6, 6)}. Event that sum is 11 or higher

and first roll is a 6: A ∩B = {(6, 5), (6, 6)}.
Probability of both A and B: Pr[A ∩B] = 2

36 (this is also written Pr[A and B]).
Probability that either A occurs, or B occurs, or both: A ∪ B. Event that sum is 11 or higher

or first roll is a 6: A ∪ B = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (5, 6)}. Probability of this event:
Pr[A ∪B] = Pr[A or B] = 7

36 .

Conditional probability. Probability of event B given that A occurs: Pr[B | A] := Pr[A∩B]
Pr[A] .

Example: probability first roll is six given sum is at least 11 is

Pr[B | A] =
Pr[A ∩B]

Pr[A]

=
2/36

3/36

=
2

3
.

Independence. Events A and B are independent if Pr[A] = Pr[A | B]. Verbally, conditioning on
whether B has happened does not impact the probability of A. Check this is equivalent to the conditions
Pr[A ∩ B] = Pr[A] Pr[B] and Pr[B] = Pr[B | A]. For example, the event C that the first die exceeds 5
and the event D that the second die exceeds 4 are independent.

Random variables. Formally, a R.V. is a function X : Ω→ R. (Doesn’t have to be the real numbers,
but usually it is.)

Example: X = sum of the two die. X(a, b) = a+ b.
We can now write events as e.g. X ≥ 11, which technically means the event {ω : X(ω) ≥ 11}. This

is the same as event A above. So we can write Pr[X ≥ 11].
Example: Y = value of first die. Y (a, b) = a. Example: Pr[Y = 6 | X ≥ 11] = 2

3 .
If we take a function of random variables, e.g. 5X2 + Y + 2, this is another random variable, and we

can talk about probabilities of events like Pr[5X2 + Y + 2 ≥ 10].
Random variables X,Y are independent if for all values x, y, Pr[X = x and Y = y] = Pr[X =

x] Pr[Y = y]. For example, if Y is the value of the first die and Z the second die, then Y and Z are
independent.

11-12-1

Expectation. The expectation of a random variable is E[X] :=
∑

x xPr[X = x]. The sum ranges over
all possible values x of X. We can also write this very formally as E[X] =

∑
ω∈Ω p(ω)X(ω).

Examples above:

E[Y] =

6∑
y=1

Pr[Y = y] · y

=
1

6
(1) +

1

6
(2) +

1

6
(3) +

1

6
(4) +

1

6
(5) +

1

6
(6)

= 3.5.

Similarly, E[X] = 7.
Again, we can consider random variables that are functions of others, e.g. E[5X2 + Y + 2].

Fact 1 (Linearity of expectation). For any random variables X,Y , we have E[X + Y] = E[X] + E[Y].

Proof.

E[X + Y] =
∑
ω∈Ω

p(ω) (X(ω) + Y (ω))

=

(∑
ω∈Ω

p(ω)X(ω)

)
+

(∑
ω∈Ω

p(ω)Y (ω)

)
= E[X] + E[Y].

This is great because it’s true no matter what, even if X and Y are correlated.
Also: convince yourself that if β ∈ R is any real number and X is any random variable, then

E[β ·X] = β · E[X].

1.1 Conditional probability

Consider an event such as Y = y. We define the conditional expectation of X, conditioned on this event,
as:

E[X | Y = y] :=
∑
x

Pr[X = x | Y = y]x.

We may use subscripts to denote an expectation taken only over a particular random variable:

E
Y
E
X

[X | Y] :=
∑
y

Pr[Y = y]

(∑
x

Pr[X = x | Y = y]x

)
.

Another important probability fact:

Fact 2 (Law of total expectation). Let X,Y be random variables. Then E[X] = EY (EX [X | Y]).

Proof.

E
Y

(
E
X

[X | Y]
)

=
∑
x,y

Pr[X = x and Y = y]x

=
∑
x

xPr[X = x]

(∑
y

Pr[Y = y | X = x]

)
=
∑
x

xPr[X = x]

11-12-2

2 Randomized Algorithms

We will formalize randomized algorithms via the word RAM model, where we add an “oracle”, i.e. a
function or API the algorithm can query. We suppose that the algorithm can, in constant time, ask
for and receive an independent random number. For our purposes, this can be a bit, uniformly random
integer in a finite range, or even random real number in [0, 1]. (In some contexts, one may rightly worry
about whether this is realistic).

2.1 Randomized approximation algorithms

When an algorithm is randomized, we modify the definition of approximation to consider the expected
value obtained by the algorithm. Formally, a randomized algorithm for optimization problem f has
performance that is a random variable for any given instance, call that random variable ALG.

Then the algorithm has an approximation ratio α if E[ALG] ≥ α ·OPT (maximization problem); or
it is a C-approximation if E[ALG] ≤ C ·OPT (minimization problem).

One can also ask that the algorithm is exactly correct with high probability, or acheives a certain
approximation with high probability, or so on.

3 Max-3SAT

A 3-CNF is a boolean formula in conjunctive normal form (CNF) with 3 literals per clause. Let us
unpack what this means.

• We have n variables x1, . . . , xn which are boolean (can be set to true or false).

• A literal is either a variable xi or its negation x̄i, meaning NOT xi.

• A clause in this case is an OR of three literals, e.g. x1 OR x̄2 OR x3, where a variable cannot
appear twice. Note the clause is true if any of the three literals evaluates to true, otherwise it is
false.

• A 3-CNF formula is an AND of a sequence of m clauses, e.g.

(xi OR xj OR x̄k) AND · · · (xa OR x̄b OR xc)

This evaluates to TRUE if all of the m clauses evaluate to TRUE.

Determining if a given 3-CNF is satisfiable, i.e. if there exists a setting of x1, . . . , xn such that it is
TRUE, is NP-complete.

The Max-3SAT problem: Input a 3SAT on n variables, m clauses. Output: a setting of x1, . . . , xn
to maximize the number of TRUE clauses.

Theorem 1. There always exists a choice of variables such that ≥ 7
8 of the clauses are TRUE.

Proof. Consider the following algorithm: For each xi, independently set it to be TRUE with half prob-
ability, FALSE otherwise.

Consider any clause j ∈ {1, . . . ,m}. Let the random variable Zj = 1 if it is satisfied, 0 otherwise.

Lemma 1. For any j, Pr[Zj = 1] = 7
8 .

Proof: homework!
Let Y be the number of satisfied clauses, i.e. Y =

∑m
j=1 Zj . Then the expected number of satisfied

clauses is

E[Y] = E

 m∑
j=1

Zj

 =

m∑
j=1

E[Zj] = m · 7

8
.

We used linearity of expectation. Then we used that

E[Zj] = Pr[Zj = 1](1) + Pr[Zj = 0](0) = Pr[Zj = 1].

11-12-3

Now we use another important and common fact from the course: If E[Y] ≥ c, then there exists a
value of Y that is at least c. (Otherwise, if all values were strictly less than c, the expectation would
have to be less than c.)

So there must exist at least one outcome in the sample space where Y ≥ 7
8m. In other words, there

is some choice of x1, . . . , xn such that at least 7
8 of the clauses are satisfied.

This is an example of the probabilistic method : prove something exists by randomly constructing it,
and showing this random construction sometimes succeeds.

In fact, Theorem 1 yields an approximation result:

Theorem 2. There is a randomized 7
8 -approximation-ratio algorithm for MAX-3SAT.

Proof. Our naive randomized algorithm achieves E[ALG] ≥ 7
8m. Since OPT ≤ m always, we have

E[ALG] ≥ 7
8OPT .

Amazingly, the following theorem is known:

Theorem 3 (H
◦
asted). If P 6= NP , then no polynomial-time algorithm guarantees better than a 7

8
approximation ratio for Max-3SAT.

4 Min Weighted Vertex Cover

In the weighted vertex cover problem, the input is an undirected graph G = (V,E) and a list of positive
vertex weights: wv for each v ∈ V .

The goal is to output a vertex cover with smallest total weight. Recall that a vertex cover is a set of
vertices, S ⊆ V , such that for all edges (u, v) ∈ E, at least one of {u, v} is in S. The total weight of a
vertex cover is w(S) :=

∑
v∈S wv.

Algorithm: Initialize S = ∅. For each edge e = (u, v):

• if u or v are already in S, continue.

• with probability wv

wu+wv
, add u to S. Otherwise, add v. (Note the probability of adding v is

wu

wu+wv
.)

Note the idea is to bias toward adding the smaller -weight vertex: If wv is much larger than wu, then we
are much more likely to add u.

First, note this does give a vertex cover, because we iterate through all edges and, if not yet covered,
always add one of its endpoints to S. We will skip the running time and space analysis. The key idea for
approximation will be that most of the “weight” in S comes from OPT vertices, so S cannot be much
larger than OPT.

Theorem 4. This randomized algorithm gives a 2-approximation.

Proof. Let S0, . . . , Sm be the sets of the algorithm at each round, with S0 = ∅. Define At = St ∩OPT .
In other words, it is all of the vertices added so far that are also in the optimal smallest-weight vertex
cover. Meanwhile, define Bt = St \At. This is all of the non-OPT vertices that are added.1

We will prove in Lemma 2 that E[w(Bm)] ≤ E[w(Am)]. In other words, S contains more weight from
OPT than weight from non-OPT vertices. This implies

E[w(S)] = E[w(Am)] + E[w(Bm)]

≤ 2E[w(Am)]

≤ 2E[w(OPT)].

The last line follows because Am ⊆ OPT , so w(Am) ≤ w(OPT).

1Notice the algorithm doesn’t know these things because it doesn’t know OPT. We are only using them in the analysis
to prove performance.

11-12-4

Now we need to prove Lemma 2.

Lemma 2. E[w(Bm)] ≤ E[w(Am)].

Proof. Let Xt = w(At)−w(At−1). Let Yt = w(Bt)−w(Bt−1). These are random variables, the increases
in the weights of the sets at each round. Now, we will need one more fact, Lemma 3: at each round t,
if we fix the outcomes of the previous rounds St−1 = s, then E[Xt | St−1 = s] ≥ E[Yt | St−1 = s].

Given this fact, we know that E[Yt] ≤ E[Xt] by the law of total expectation, because E[Xt] =
ESt−1

E[Xt | St−1] and similarly for Yt. So

E[w(Bm)] = E

[
m∑
t=1

Yt

]

=

m∑
t=1

E[Yt]

≤
m∑
t=1

E[Xt]

= E[w(Am)].

Lemma 3. For each round t and fixed St−1 = s, E [Xt | St−1 = s] ≥ E [Yt | St−1 = s].

Proof. At round t, if the edge is already covered by some vertex in St−1, the sets remain the same, i.e.
E[Xt | St−1 = s] = E[Yt | St−1 = s] = 0. If the edge is not yet covered, then OPT must contain either
u, or v, or both. If it contains u only, then

E[Xt | St−1 = s] = Pr[add u]wu

=
wuwv

wu + wv

= Pr[add v]wv

= E[Yt | St−1 = s].

If OPT contains v only, then the expected increases are exactly the same. (Check.) And if OPT contains
both u and v, then E[Yt | St−1 = s] = 0 while E[Xt | St−1 = s] > 0. This proves that for any outcome
of St−1, the inequality holds.

5 Min-cut contraction algorithm

In the global min cut problem, we are given an undirected graph G = (V,E). Given any cut U1, U2, the
value of the cut is the number of edges crossing it.

The goal is to find any cut, with both U1 and U2 nonempty, minimizing the value of the cut.
Note one approach could be to consider all possible pairs of vertices s, t, convert the graph to a

directed graph, and find the min s-to-t cut. The smallest of these would be the global min cut.

Here, we will consider a randomized algorithm that finds the exact correct solution with some prob-
ability. We will assume the graph is connected, otherwise there is a cut with value 0 that can be easily
found in linear time (how?).

Define a multigraph: graph that may have multiple edges between any pair of vertices.
First, define “contraction”. When contracting a graph G = (V,E) by edge e = (u, v), we create a

copy of the graph G′ without u, v or their incident edges. Then we add a new vertex auv that represents
the “joining” of these two. For every edge (u′, u) or (u′, v) in the original graph, we add an edge (u′, auv)
in the new graph. (Note edges are still undirected and it may be a multigraph.)

Algorithm:

11-12-5

• Pick an edge uniformly at random.

• Contract the graph along that edge.

• Repeat until only two vertices u, v remain.

• Return the cut corresponding to these two vertices (i.e. U1 = all vertices that were contracted into
u, U2 = all that were contracted into v).

Theorem 5. The probability of correctness is at least 2
n(n−1) .

(Note: this is not very good, but in HW we will see that repeating the algorithm polynomially many
times gives a good success probability. What would be the success chance if we picked a cut uniformly
at random from the space of all cuts?)

Proof. Let k be the size of the min cut (pick a particular min cut if there are more than one). Let Et

be the event that that, in round t, the edge selected does not belong to the min cut. There are n − 2
rounds, because in each round we decrease the number of vertices by one until we have two left. The
algorithm outputs the min cut if it never contracts any edge in the min cut (agreed?), so the goal is to
prove that Pr[E1 ∩ · · · ∩ En−2] ≥ 2

n(n−1) .

Note each vertex has degree at least k, otherwise putting it in U1 alone would be a smaller cut. So
the total number of edge endpoints is at least nk where n is the number of vertices. So the number of
edges is at least nk

2 .

We pick an edge uniformly at random, and there are at least nk
2 edges, so Pr[E1] ≥ 1− k

|E| ≥ 1− 2
n . If

we succeeded in the first round, we have an n−1 vertex graph with min cut k, so by the same reasoning,
Pr[E2 | E1] ≥ 1− 2

n−1 . Repeat until n drops to 2: we have

Pr[E1 ∩ · · · ∩ En−2] = Pr[E1] Pr[E2 | E1] · · ·Pr[En−2 | E1 ∩ · · · ∩ En−3]

≥
(

1− 2

n

)(
1− 2

n− 1

)
· · ·
(

1− 2

3

)
=

(
n− 2

n

)(
n− 3

n− 1

)
· · ·
(

1

3

)
=

(n− 2)!(2)

n!

=
2

n(n− 1)
.

11-12-6

