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These notes review some basics we will rely on throughout the course.

Objectives for this lecture:

• Understand how we mathematically define algorithms in this course: the word RAM model.

• Understand how we rigorously analyze algorithms in this course: proofs of correctness and efficiency
(what is a proof?), big-O notation.

• Familiarize yourself with the course outline; categorize the kinds of algorithmic problems we will
encounter.

1 What is an algorithm?

The word traces its roots to al-Khwarizmi, the Persian author of a ninth-century text on algebra. For
a long time the term algorithm referred to methods of numerical calculation such as solving equations.
Nowadays, it is much broader. A working definition for the purposes of this course:

An algorithm is a series of steps∗ for solving a problem∗.

where, importantly, the allowable steps and the problem are

∗mathematically well-defined.

The rest of these notes discuss what it means for a problem and an algorithm’s steps to be mathe-
matically well-defined; then, what design and analysis of algorithms entails.

1.1 Well-defined problems

For a problem to be mathematically well-defined, we usually require it to have input and output rep-
resented in digital symbols, e.g. binary or ASCII characters. For example, the input may be a list of
integers (separated by commas), while the output is required to be a sorted list of the same integers.

In first courses on algorithms, one generally studies problems like sorting where the algorithm begins
with a certain input, must convert it to a certain output, and then stops.

Later in this course, we will expand our notions of problems in various ways. Sometimes the goal
will be to find any “good enough” solution – an approximate solution. Sometimes, the input will not
be available all at once: We will see part of the input, be forced to make some decision, then continue.
This is an online algorithm. Perhaps our algorithm can use randomness, or the input itself is random
in some way, and the goal is to produce outputs that are good in expectation or with high probability.

2 The Word-RAM Model

For the “well-defined steps” part of the algorithm definition, we need a computational model.
Around the 1930s onward, mathematicians including Gödel, Church, Turing, Post, and Kleene began

to resolve a thorny question: what does it mean for a function or quantity to be “effectively calculable”?
The answer essentially boiled down to “there must exist an algorithm for calculating it.” Various
formalizations of algorithms arose, including the lambda calculus, µ-recursive functions, and Turing
Machines.
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A key component of any definition of “algorithm” is that it can be mechanized or automated —
implemented on a computer. To do so, we must list the precise types of steps that may be taken and
precisely what it means to take each step.

So, generally, we use a particular model of computation that has a set of legal steps (commands,
instructions, etc). We could use a Turing Machine, in theory, but it wouldn’t be very easy nor useful.
We need a model of computation that is still mathematically analyzable, but much closer to modern
machines, which are based on the von Neumann and Harvard architectures. It should have these features:

• The algorithm, a program represented as a fixed sequence of instructions.

• The input and space for the output, each stored separately.

• The working memory, initially blank, that the computer uses to store local variables and data
structures.

The computer executes the algorithm one step at a time, interacting with the input, output, and memory
as directed.1

Specifically, we define an algorithm in the word RAM model of computation as follows.

• The input, output, and working memory are each represented as arrays. Initially, the input array
is written while the output and working memory are blank.

• Each entry in an array can store an integer or floating-point number2, represented in binary, up
to a certain bit length. We may also let entries store characters (e.g. ASCII or Unicode).

• The maximum number of bits per entry in the arrays is called the word size.

The algorithm is a sequence of instructions, each of which executes in constant time. Legal, constant-
time instructions include:

• Arithmetic operations on any entry or entries of the arrays: add, subtract, multiply, divide, re-
mainder, floor, ceiling. Note these operations occur in constant time for numbers that fit into
the arrays. Exponentiation may require more care and should be analyzed separately.

• Condition checks and branches, such as if statements; the checks and branches in while and for
loops; and subroutine calls.

• Accessing any element of an array, if we have its index (also called address) stored in a known
location. This is the Random Access Memory (RAM) component of the model. If the arrays can
have length m, then a location index requires dlog2(m)e bits to write down, so the word size must
be at least this large.

Below is an example description of an algorithm. Here the local variables x and i will be stored in
working memory, but it is not necessary to describe where exactly on the working memory array they
are located. We just need to know that they require one memory slot each.

Unless otherwise stated, we will assume that all numbers encountered by our algorithms fit
in the word size. For example, in analyzing correctness of Algorithm 1, we would generally simply
assume that x always fits into one array slot of the word RAM model.

In other words, we will generally analyze algorithms as though each RAM entry holds an arbitrary
real number, with arithmetic operations taking constant time. In practice, one could (and should) check
for integer overflow and for floating-point overflow, underflow, and innaccuracies.

1This is the simplest-possible, single-threaded model; it can be extended to include parallel processors, distributed
computation, randomness, etc.

2We may sometimes pretend these are arbitrary-precision real numbers, for convenience.
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Algorithm 1 Summing a list

Input: list A of length n
x = 0
for i = 1 to n:
x += A[i]

Output x

Exercise 1. What is the difference between the following two problems in the word RAM model? What
would the difference be in the input array, output array, and algorithm to solve them? (a) Adding two
integers, both of which are of size less than 2w−1 where w is the word size. (b) Adding two integers,
which could have arbitrary size.

Exercise 2. Consider the problem of sorting a list of integers. Formalize this as a mathematically
well-defined problem. What is the format of the input array and expected format of the output array
on the word RAM model? Suppose all integers fit in the word size.

Exercise 3. Write an algorithm to find the maximum number in a given list of integers. The algorithm
should be written in pseudocode to run on the word RAM model, i.e. in the same format as Algorithm
1.

3 Why study algorithms?

Here’s a brief set of answers:

• Understand performance and capabilities of algorithms you interact with.

• Understand kinds of problems and typical solutions or approaches.

• Know how to design new algorithms or variants.

• Preparation for more advanced or specialized topics, e.g. machine learning.

• It is intellectually interesting and enjoyable!

4 Analyzing algorithms

Given an algorithm, we want to analyze two properties:

1. Correctness: does the algorithm solve the problem? I.e. given a well-formed input, does it always
produce a correct output? (Later in the course, we will look at relaxations of this goal, such as
approximately correct or probably correct.)

2. Efficiency: what resources does the algorithm use? The most common resources are time and
space. (There can be others: randomness, communication, amount of access needed to the input
data, ...) In the word RAM model, time is usually measured in terms of number of operations;
space is the number of working-memory array slots used.

We will generally measure efficiency in the worst case, but we will also see analysis on average over a
random process. Because the word RAM model is only a rough approximation or abstraction, we don’t
want to obsess too closely over exact performance; big-O is usually enough to tell the key story.
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4.1 Big-O notation: recap

An informal recap of big-O notation:

Symbol similar to English meaning (up to a constant factor)
O(·) ≤ asymptotically at most
o(·) < asymptotically less; shrinking compared to
Ω(·) ≥ asymptotically at least
ω(·) > asymptotically more; diverging compared to
Θ(·) = asymptotically the same

More formally, for two positive-valued functions f, g, we say:

• f(n) ∈ O(g(n)) if there exist positive numbers C,N such that, for all n ≥ N , f(n) ≤ C · g(n).

• f(n) ∈ o(g(n)) if limn→∞
f(n)
g(n) = 0.

• f(n) ∈ Ω(g(n)) if g(n) ∈ O(f(n)).

• f(n) ∈ ω(g(n)) if g(n) ∈ o(f(n)).

• f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

You may sometimes see big-O notation in equations and inequalities and it can take some work to
interpret. For example, if someone writes

x+O(x2) ∈ O(x2)

or even
x+O(x2) = O(x2)

what they mean is “for any f(x) ∈ O(x2), the function x+ f(x) is in O(x2).”
Try to avoid using big-O notation in equations like these unless it is very clear what you mean; when

in doubt, explain.

Exercise 4. Let f(n) = 2n2 + 3n+ 2. True or false?

(a) f(n) ∈ O(n3).

(b) f(n) ∈ o(n3).

(c) f(n) ∈ O(n2).

(d) f(n) ∈ o(n2).

(e) f(n) ∈ Ω(n3).

(f) f(n) ∈ Ω(n2).

(g) f(n) ∈ ω(n3).

(h) f(n) ∈ ω(n2).

(i) f(n) ∈ Θ(n3).

(j) f(n) ∈ Θ(n2).
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4.2 Proofs

In this course, we must prove our claims about an algorithm’s correctness or efficiency. For example, we
may claim that an algorithm always correctly sorts its input, or that it runs in time O(n2) in the word
RAM model. What exactly must we do to “prove” the claim? As a refresher:

• All terms used must be clearly mathematically defined. If you are stuck, the first step is to always
write the definitions of all terms involved.

• A proof is a series of steps.

• Each step makes a new claim and explains how it follows from a basic rule of logic applied directly
to previous steps or external facts.

• At the beginning of the proof, we have all facts already known and any assumptions made.

• At the end, the final step should contain the original claim we wanted to show.

When we write proofs in practice, we sometimes leave out basic details. For example, if an algorithm
contains a step set x = 0, then one of our steps can be to claim this step takes constant time. We may
skip recalling all the details of the word RAM model that imply that it is constant time. However, we
should always be careful when leaving out details, in case we leave out too much.

Example. Recall Algorithm 1, which sums a list of numbers. Let us prove an efficiency claim.

Proposition 1. Algorithm 1 runs in O(n) time and uses O(1) space in the word RAM model, where n
is the length of the input array.

Proof. The initial assignment x = 0 takes constant time. Each iteration of the loop involves checking if
i exceeds n, accessing A[i], adding x and A[i], storing the result into x, incrementing i and storing the
result, and branching back to the start of the loop; all of these are constant-time operations, so each
iteration of the loop takes O(1) time. The loop takes constant time and executes n times, so it takes a
total of O(n) time. Finally, writing x onto one cell of the output array takes constant time. All of these
steps – the initial assignment, the loop, and writing the output – sum to O(n) time.

Meanwhile, the only working memory the algorithm needs is for x and i. So it uses 2 working memory
slots, i.e. O(1) space.

Notice that in the above proof, each sentence contains one new step, i.e. makes a new claim and
justifies why the claim is true using previous steps and facts. However, it is fine to use multiple sentences
to justify a given step. Often, a large step is justified by first showing a sequence of smaller steps. For
example, to prove the claim that the loop takes O(n) time, we first had to show the claim that each
iteration of the loop takes O(1) time.

5 Designing algorithms

Understanding algorithms in general may seem a large, daunting task. Luckily, it’s not the case that every
new algorithmic problem must be solved from scratch in an ad-hoc way. There are general categories of
problems, and there are toolsets for each category. In this course, we will cover “case studies” of some
of the most important problems and tools in various categories. Along the way, we will learn general
skills for rigorous design and analysis.

Outline of course topics

• Module 1: Graph and Combinatorial algorithms
Graph search, dynamic programming, flows, matchings.
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• Module 2: Approximation, Online, and Randomized algorithms
Examples: greedy matching, ski rental problem, “online” secretary-type problems, hash tables,
Bloom filters.

• Module 3: Continuous, Linear, and Convex methods
Examples: random walks and PageRank, no-regret learning and zero-sum games, linear-programming
applications.
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