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Depth-First Search and Topological Sort

Designed by Prof. Bo Waggoner for the University of Colorado-Boulder Updated: 2023

This lecture defines graphs, a foundational abstraction. It then discusses depth-first search on graphs
and uses it to find a topological sort.

Objectives:

• Understand the definitions of directed and undirected graphs, neighbors, paths, cycles, etc.

• Understand depth-first search (DFS) as a generic procedure, e.g. for solving Reachability.

• Know the definition of a directed acyclic graph (DAG) and topological sort; know how to use DFS
to compute a topological sort of a DAG in linear time.

1 Graphs

Recall that graphs represent relationships between pairs of objects. Formally, a graph G = (V,E) has
a set of vertices V (also called nodes) and edges E. We usually say |V | = n and |E| = m. If G is
undirected, then an edge e ∈ E is a pair of vertices, e.g. e = {u, v}, representing a connection between
the two vertices u and v. It G is directed, then an edge e ∈ E is an ordered pair of vertices, e.g.
e = (u, v), representing a connection from u to v.

We usually assume that our graphs do not have “self-loops”, i.e. edges connecting u to itself, but
such graphs are sometimes used.

Examples. An example of an undirected graph is a friendship network where the vertices are people
and there is an edge {u, v} ∈ E if u and v are friends with each other. An example of a directed graph is a
hyperlink graph of the World Wide Web where the vertices are webpages and there is an edge (u, v) ∈ E
if page u contains a hyperlink to page v. Notice that edges (u, v) and (v, u) can both be present in E if
both pages link to each other.

Paths and cycles. Recall1 that a path in an undirected graph G is a nonempty sequence of vertices
v1, . . . , vk, where each vertex vi ∈ V , such that for each pair of consecutive vertices vi and vi+1, there
is an edge {vi, vi+1} ∈ E. The length of a path is the number of steps in the path, i.e. length of the
sequence minus one. A cycle is a path of length at least one whose first and final vertex are the same.
In a directed graph, these definitions are the same except that edge (vi, vi+1) ∈ E is directed, pointing
from vi to vi+1.

A path is simple if it does not contain any vertex more than once, and a cycle is simple if it does
not contain any vertex more than once except the start/end vertex and does not re-use any edges.

Neighbors and degrees. In an undirected graph, we say v is a neighbor of u in a graph if there is
an edge {u, v} ∈ E. In a directed graph, the term neighbor is ambiguous; one can use out-neighbor to
refer to a v such that edge (u, v) ∈ E, and similarly for in-neighbor.

The degree of u is the number of edges incident to it, i.e. edges in which u appears as an endpoint.
In a directed graph, we can also define the out-degree of u to be the number of edges from u to some
other vertex, and the in-degree is the number of edges from some other vertex to u.

1These definitions are not universal; some places use them slightly differently and define the related terms walk and
trail, which we won’t use here.
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Representation in word-RAM. One way to represent a graph as input to a word-RAM machine is
as an adjacency list. We assume the vertices are numbered 1, . . . , n. Then the input consists of a list of
out-neighbors of vertex 1, then 2, . . . , n. If the graph is undirected, then the list simply consists of each
vertex’s neighbors.

With this representation, it takes constant time to look up the start of any vertex u’s list (we can
suppose the input begins with a list of pointers in order to make this true). To iterate through the list
requires a number of iterations equal to the length of the list, of course. But in order to e.g. check
whether there is an edge (u, v), we must iterate through the entire list, which can take time O(n) in the
worst case as u can have up to n neighbors.

The other popular representation is as an adjacency matrix. Here the input consists of an n × n
matrix, flattened into a list, where the (u, v) entry is 1 if (u, v) ∈ E and is 0 otherwise. In this case, it
takes constant time to check whether there is an edge (u, v), since we can calculate the position of the
entry in the input and read it immediately. However, to iterate through all of u’s neighbors generally
takes O(n) time, even if u has much fewer neighbors, since we must check all n entries in the u row of
the matrix.

Figure 1: An undirected graph.
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Exercise 1. Consider the undirected graph of Figure 1. For each of the following, list its neighbors and
state its degree.

(a) A

(b) B

(c) C

Exercise 2. Consider the undirected graph of Figure 1. For each of the following, is it a path, simple
path, cycle, and/or simple cycle? (Name all that apply.) If it is a path, what is its length?

(a) A

(b) B,D,F

(c) A,C,A

(d) B,C,E,B

Exercise 3. Consider the directed graph of Figure 2. For each of the following, list its neighbors, state
its degree, its in-degree, and its out-degree.

(a) A

(b) B

(c) C
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Figure 2: A directed graph.
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Exercise 4. Consider the directed graph of Figure 2. For each of the following, is it a path, simple
path, cycle, and/or simple cycle? (Name all that apply.) If it is a path, what is its length?

(a) A,B,D

(b) B,C,E,B

(c) B,E, F,D,B

(d) A,C,A

(e) B,C,A,B,E,D,B

Exercise 5. In big-O notation, for a graph with |V | = n and |E| = m, how large is the adjacency list
representation (i.e. how much space is used)?

Exercise 6. And how large is the adjacency matrix representation?

2 Reachability

The Reachability problem is: given a directed graph G = (V,E) and two vertices s, t, output True if
there is a path from s to t, False otherwise. (Note that an algorithm that works on directed graphs will
work on undirected graphs as well!)

We will suppose G is represented as an adjacency list. The question: design an algorithm for this
problem and prove its correctness and running time.

Algorithm 1 DFS-Reachability

1: Input: Graph G = (V,E), vertices s, t
2: Define array is marked of length n
3: Set is marked[v] = False for v = 1, . . . , n
4: Call DFS-explore(s)
5: Return is marked[t]

Subroutine 2 DFS-explore(u)

1: Set is marked[u] = True
2: for each out-neighbor v of u do
3: if is marked[v] == False then
4: DFS-explore(v)
5: end if
6: end for
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Correctness - high-level proof: There are two things to prove: (1) if the algorithm outputs True,
then there is a path from s to t; (2) if there is a path from s to t, then the algorithm outputs True.
Observe that a vertex v is marked if and only if we call DFS-explore(v), because its first line is the only
place we set is marked[v] = True.

First suppose there is a path from s to t, call it v1, . . . , vk with s = v1 and t = vk. We claim every
vertex vi in the path is marked, i.e. has DFS-explore called. Proof sketch by induction: for the base
case, s = v1 is marked by the first call to DFS-explore(s). For the inductive step, suppose v1, . . . , vj
are marked. Then in the for loop of the call DFS-explore(vj), we check the neighbor vj+1. It is either
already marked, meaning we already called DFS-explore(vj+1), or we call it now. This completes the
proof that every vj in the path is marked, including t.

On the other hand, suppose the algorithm outputs True. Then at some point it called DFS-explore(t).
One possible case is that t = s, in which case there is a trivial path from s to t. Otherwise, there is some
v such that t is a neighbor of v and we called DFS-explore(v). Repeating the above logic for v, we get
either v = s, or it is a neighbor of some u that was marked. Since the algorithm cannot run infinitely
long, this process must terminate with s. Because each vertex is a neighbor of the previous one, this
sequence gives a path, e.g. s, . . . , u, v, t.

Running time - high-level proof: The body of DFS-Reachability takes O(n) time, as it only needs
to initialize the length-n array, call DFS-explore, and look up t in the array.

For DFS-explore, we first argue it is called at most once per vertex, so at most n times. This follows
because we only call it on unmarked vertices, and every time we call it, we immediately mark v.

We analyze DFS-explore carefully be looking at each line and asking how many times it executes total
over the entire course of the algorithm (this is the idea behind “amortized analysis”). Line 1 executes
once per call, and we argued it is called at most n times, so this contributes O(n) to the running time.

The body of each for loop, lines 3-5, each contribute a constant amount of operations. And the
for loop executes once per edge out of v, in other words, the total amount of work in the form loop is
O(out-degree(v)). Over the course of the entire algorithm, this totals at most

O

(∑
v∈V

out-degree(v)

)
= O(m)

where m is the number of edges.
So we have shown that the algorithm’s total running time is at most O(n) +O(m) ∈ O(n+m).

Exercise 7. If the input graph is represented as an adjacency matrix rather than adjacency list, explain
how the running time changes.

Exercise 8. If the input graph is undirected, explain what changes in the algorithm, proof of correctness,
and proof of running time.

3 Topological sort

Definitions. A directed, acyclic graph (DAG) is a directed graph that has no cycles. Such graphs arise
in many applications, especially where edges represent a dependency: vertex u must be visited, e.g. its
task must be completed, before we move on to vertex v.

A permutation (or ordering) of the vertices is a bijective function π : {1, . . . , n} → V where π(1) is
the first vertex in the ordering, π(2) is the second, etc. Here π−1(u) is inverse function of π, which gives
the location of u in the ordering. When we plug an index into π, it gives us a vertex. When we plug the
vertex into π−1, it tells us the index.

A topological sort of a DAG G = (V,E) is a permutation π such that every edge in the graph points
forward, i.e., for all edges (u, v) ∈ E, π−1(u) < π−1(v). In other words, u must be located prior to v in
the ordering.

As usual, the question is to give an algorithm for this problem and argue correctness and efficiency
(which again is time and space usage).

2-4



Algorithm description. We maintain a list A, initially empty. We also start with each vertex
unmarked. Then, we do a depth-first search from vertex 1. After visiting all of its neighbors, we add 1
to the beginning of A. We then do the same DFS from vertex 2 if it is not yet marked, then 3, . . . , n.

Meta note. If this were a homework or exam problem, then given that we have covered DFS in class
and in the textbook chapter, the above description would be perfectly acceptable. To be clear, and
because it’s early in the class, we will also write out the algorithm formally below.

Algorithm 3 DFS-Topo

1: Input: Graph G = (V,E), vertices s, t
2: Define array is marked of length n
3: Set is marked[v] = False for v = 1, . . . , n
4: Create list A, initially empty
5: for each vertex v do
6: if is marked[v] == False then
7: DFS-explore-2(v)
8: end if
9: end for

10: Return A

Subroutine 4 DFS-explore-2(v)

1: Set is marked[v] = True
2: for each neighbor w of v do
3: if is marked[w] == False then
4: DFS-explore-2(w)
5: end if
6: end for
7: add v to beginning of list A

Correctness. We argue that every vertex is added to A exactly once, so it is a permutation. Then we
argue that it is a topological sort, i.e. all edges point forward.

First, we add a vertex v to A only when we call DFS-explore-2(v). We only call DFS-explore-2(v) at
most once per vertex, because we only call it if v is unmarked and then we immediately mark v. Finally,
we call it for every vertex because of the for loop in DFS-Topo (line 5). So A is a permutation.

Now, consider any edge (u, v). We must argue that u is added to the list A after v is added to the
list. Then, u will be earlier in the list than v.

At some point, we call DFS-explore-2(u). During the for loop, we reach neighbor v. There are two
cases. If v is already marked, then we have already called DFS-explore-2(v). Furthermore, we know the
call to DFS-explore-2(v) has completed. If we were still in a recursive call to DFS-explore-2(v), then
there would be a path from v to u given by the sequence of calls. Along with the edge from u to v, this
gives a cycle, which contradicts that G is a DAG.

So in the case where v is already marked, we have called DFS-explore-2(v) and it has completed. So
v has already been added to list A. If v is not already marked, then we call DFS-explore-2(v) now and
wait for it to complete. Then, v will have been added to list A. Only after this loop do we add u to the
beginning of A, so in either case u is before v in the list. So it is a topological sort.

Running time. We claim that DFS-Topo runs in time O(n+m), assuming the input graph is a DAG
in adjacency list format.

Proof sketch: we just need to consider how the previous DFS analysis changes. We have added a for

loop to DFS-Topo (line 5). However, the total work done in DFS-Topo is still O(n), since we execute
the loop n times. Furthermore, it is still true that DFS-explore-2 is called at most n times, and the
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analysis of its running time in lines 1-5 is the same, so the total work done is still at most O(n+m). We
now need to consider the amount of work required to build the list A. One implementation is to build
it backwards: make A an array, and add each new vertex to the end of the array. This takes O(1) time
per addition, so O(n) work total. Then, at the end of the algorithm, we write A onto the output array
in reverse, which takes O(n) time. So the total running time is still O(n+m).

Exercise 9. Suppose that DFS-Topo only called DFS-Explore-2 on vertex 1 rather than looping through
all vertices. How could it go wrong? Give an example input where the algorithm is incorrect.

Exercise 10. If a graph G is a DAG, then we know it has some topological sort, because we proved our
algorithm finds one. Prove the converse: if a graph is not a DAG, then it has no topological sort.

Hint: start by writing down the definition of a topological sort.
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