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In this problem, we are given a set of items i = 1, . . . , n each with a value vi ∈ R+ (a positive
number) and a weight or size wi ∈ N (a nonnegative integer).

We are given a number W ∈ N which is the maximum weight our knapsack can hold, also called
the capacity or size of the knapsack. We must find the max-value subset of items that can fit in the
knapsack. There are several versions of this problem; let’s look at the first.

1 Duplicates allowed

In this version of the knapsack problem, there are unlimited copies of each item available (energy bars,
etc.).

Recall the elements of a DP solution: subproblem definition, computing the final value, the re-
currence, and reconstructing the solution. Here a natural subproblem is to have a smaller-capacity
knapsack. Namely, let C[w] = the maximum value we can fit in a knapsack of size w. With this
subproblem, computing the final value is easy, as it is just C[W ].

For the recurrence, as usual, we need a mathematical structure or fact. For the base case where
w = 0, i.e. no items can fit, the value is zero. So we set C[0] = 0. For the inductive case:

Claim 1. For w ≥ 1,

C[w] = max

{
C[w − 1]

maxi:wi≤w vi + C[w − wi]
.

In other words, we can write this as an algorithm:

• Set C[w] = C[w − 1], in other words, consider the optimal solution for a knapsack of size w − 1.
That solution can fit in this knapsack as well, since this one is only larger.

• For each item i:

– Check if item i can fit in this knapsack, i.e. check if wi ≤ w. If not, skip this item and keep
going.

– Put item i in the knapsack. We now have a space of w − wi remaining, and we have a value
of vi.

– Fill the remaining space optimally. Luckily, we already solved that subproblem: it gives a
value of C[w − wi].

– Check if the resulting total value, vi + C[w − wi], is better than our current solution. If so,
keep it.

Now let’s prove the recurrence correct:

Proof of Claim 1. Given w, either the optimal solution is empty or it has at least one item. If it’s empty
(i.e. no items fit in the knapsack), then we can just set C[w] = C[w − 1]. Acutally, both will be zero in
this case.

Suppose the optimal solution is not empty. Then it has at least one item, say i. Now for the remaining
space w−wi (which is at least zero since i fits in the knapsack), it must be used optimally. So the total
value from the remaining space is C[w − wi]. (If it were not used optimally, then we could get a better
solution for the space and then add item i to it and obtain a better solution for C[w], which contradicts
the assumption that this is optimal.)
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So C[w] = vi + C[w − wi]. So the recurrence is correct, since the optimal solution is the result of
picking the best such item i.

Combining these gives a dynamic programming algorithm:

Algorithm 1 Knapsack (duplicates allowed)

1: Input: Item values v1, . . . , vn and sizes w1, . . . , wn; capacity W
2: Output: optimal total value in the knapsack
3: Set C[0] = 0
4: for w = 1, . . . ,W do
5: Set C[w] = C[w − 1]
6: for i = 1, . . . , n do
7: if wi ≤ w then
8: Set C[w] = max{C[w] , vi + C[w − wi]}.
9: end if

10: end for
11: end for
12: Return C[W ]

Correctness: As usual in dynamic programming, correctness follows from correctness of the DP ele-
ments, which were argued above.

Efficiency: Space usage is dominated by C, which uses O(W ) space. For running time, we have nested
loops, the outer one has W iterations and the inner one has n iterations, and the interior operations are
constant time per iteration. So running time is O(nW ).

Exercise 1. Would you consider this algorithm efficient?

Exercise 2. More formally, is it officially polynomial time in the input size? Hint: if I multiply all the
sizes by 100 and the capacity by 100, the problem doesn’t change and the input size doesn’t change (as
long as it fits in the RAM model’s word size). What happens to running time?

Exercise 3. Modify the algorithm to reconstruct the actual list of items in the optimal knapsack. Hint:
Recall that for reconstruction, we should keep track of the choices our algorithm needed to make at each
subproblem. At subproblem C[j], what were our choices? Then, how do we backtrack from the very
end, i.e. C[W ], to the beginning?

The knapsack algorithm runs in what’s called pseudopolynomial time: polynomial in the length of
the input and the size of the largest integer in the input.

2 No Duplicates

In this version of the problem, there is just one copy of each item.
We might hope to modify the previous solution while keeping the subproblem C[w] essentially the

same. For example, by somehow remembering which items were used in C[w]. This turns out to fail, in
part because there could be multiple optimal subsets for C[w], and remembering all of them turns out
to be prohibitive. Instead, we need a trick similar to FLoyd-Warshall.

Subproblem. The solution is to introduce an extra dimension. Specifically, let C[k,w] be the
maximum value one can obtain from a knapsack of size w using only items from the subset {1, . . . , k}.
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Computing the final solution. We will simply return C[n,W ] where n is the number of items and
W is the knapsack capacity.

Recurrence. The base case is pretty straightforward: C[k, 0] = 0 for all item indexes k and C[0, w] =
0 for all capacities w.

For the inductive case, we need a fact.

Claim 2. For k ≥ 1, w ≥ 1, we have

C[k,w] = max

{
C[k − 1, w]

vk + C[k − 1, w − wk] (if wk ≤ w)
.

Proof. For the optimal solution with items 1, . . . , k and capacity w, there are two possibilities: we either
include item k, or we don’t. If we don’t, then the optimal solution uses only items 1, . . . , k − 1, so its
value is C[k − 1, w].

If we do, then the remaining space is w − wk, and to fill it, we are only allowed to use items
1, . . . , k− 1 because we just used item k. So the remaining value is C[k− 1, w−wk], and our total value
is vk + C[k − 1, w − wk]. Note this is only possible if wk ≤ w, as otherwise item k cannot fit.

Since these are the only two possibilities (or only one possibility if wk > w), and the recurrence
chooses the best of both, it is optimal.

Algorithm 2 Knapsack (no duplicates)

1: Input: Item values v1, . . . , vn and sizes w1, . . . , wn; capacity W
2: Output: optimal total value in the knapsack
3: Set C[0, w] = 0 for all w = 0, . . . ,W
4: for i = 1, . . . , n do
5: for w = 1, . . .W do
6: Set C[i, w] = C[i− 1, w]
7: if wi ≤ w and vi + C[i− 1, w − wi] > C[i, w] then
8: Set C[i, w] = vi + C[i− 1, w − wi]
9: end if

10: end for
11: end for
12: Return C[n,W ]

Correctness. As usual for dynamic programming, correctness follows almost immediately from the
above arguments that the three components (subproblem, final solution, recurrence) are correct.

Efficiency. Initialization takes O(n + W ) time, and returning the final result is constant time. There
are nested loops of n and W iterations, with constant-time operations in the innermost loop, so runtime
is O(nW ). Space is dominated by C, which uses O(nW ) space.

Exercise 4. How do we modify the single-use knapsack algorithm to use O(W ) space instead of O(nW )?
Hint: the approach is somewhat similar to that of e.g. edit distance.

Exercise 5. How do we modify the single-use knapsack algorithm to return the optimal subset of items
(i.e. reconstruct the solution, not just its value)?
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