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Random Walks on Graphs
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This lecture reviews adjacency matrices from a linear algebra perspective and discusses some uses,
including counting paths and random walks. We will consider uses of random walks for sampling: the
Markov Chain Monte Carlo method and a specific variant, Metropolis-Hastings.

Objectives:

• Be able to use powers of the adjacency matrix for counting paths.

• Understand the model of a finite Markov chain as a random walk on a graph; know PageRank.

• Understand the definition of a stationary distribution and when/why a random walk converges to
stationary.

• Understand the point of Markov Chain Monte Carlo methods and an overview of how they work.

1 Adjacency Matrices for Counting Paths

Given a possibly-directed, unweighted graph G = (V,E) with |V | = n, |E| = m, its adjacency matrix
AG ∈ {0, 1}n×n is the matrix

AG(i, j) =

{
1 (i, j) ∈ E
0 otherwise.

Here AG(i, j) is the entry in the ith row and jth column. Note the diagonal entries are 0, assuming that
as usual we have no self-edges.

Example: Consider the undirected “path graph” on 3 vertices that looks like this: ◦— ◦—◦. That
is, the two edges are (1, 2) and (2, 3). We have

AG =

0 1 0
1 0 1
0 1 0


In general a matrix A ∈ Rn×n is a representation of a linear function from Rn to Rn.
In this case, we can picture the vertices of the graph as the basis vectors in Rn, i.e. the first vertex

sits at coordinate e1 := (1, 0, . . . , 0), the second sits at e2 := (0, 1, 0, . . . , 0), and so on.1 Then multiplying
ei with AG maps a vertex i to the sum of all its neighbors in this space.

In the example, if we start at e1, then we move to its only neighbor, i.e. e1AG = e2. But if we start
at e2, then we move to the sum of its neighbors, i.e. e2AG = (1, 0, 1) = e1 + e3.

What happens if we apply AG a second time? Then we move to all “neighbors of neighbors”. In the
running example, e2A

2
G = (e2AG)AG = (e1 + e3)AG = e1AG + e3Ag = 2e2 = (0, 2, 0). More generally,

if we apply AG multiple times, say t, this is equivalent to multiplying by the t-th power of AG, and we
get a vector v ∈ Rd, consisting of natural numbers, where the jth entry counts the number of paths
(repeats allowed) from i to j.

Now, note that eiA is the same as picking out the ith row of A. So this is equivalent to:

1By default, we will assume vectors are row vectors, and write vᵀ for their transpose, i.e. column vectors.
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Theorem 1. AtG(i, j) is equal to the number of paths from i to j in the graph G, with repeated vertices
allowed, of length exactly t.

Proof. By induction. For t = 1, the result is true: AG(i, j) = 1 if there is an edge from i to j (hence
a path of length one), and zero if not. Now suppose it is true for t, and consider AtG = At−1G AG.
The (i, j) entry is the dot-product of the ith row of At−1G with the jth column of AG, i.e. AtG(i, j) =∑n
k=1A

t−1
G (i, k)AG(k, j). This is the sum, over all vertices k, of the number of length t− 1 paths from

i to k, times 1 if there is an edge from k to j or zero otherwise. This is precisely the number of length t
paths from i to j.

Exercise 1. Consider the undirected “bowtie” graph on 5 vertices V = {1, 2, 3, 4, 5} where (1, 2, 3, 1) is
a cycle and (3, 4, 5, 3) is a cycle. (In other words, two triangles, sharing a vertex 3.) Compute A2

G and
A3
G, and check that this counts the number of paths.

Comments:

• We can generally compute AtG in log t time, which can be useful for large t as compared to the size
of the matrix.

• For large graphs, exactly computing matrix multiplication can be computationally intensive, but
this can be a useful algorithm as well as a stepping stone to more advanced or approximate
techniques.

Exercise 2. How do we compute AtG in O(log t) time? (You may treat the size of the matrix as a
constant and assume that all arithmetic operations fit in the machine’s word size.)

Hint: first, suppose t is a power of 2. Can you do it now? Second, write t in binary, i.e. as a sum
of powers of 2.

2 The Normalized Adjacency Matrix and Markov Chains

The normalized adjacency matrix of a graph G on n vertices is WG ∈ Rn×n defined by

WG(i, j) =
1

degree(i)
AG(i, j).

In other words, we normalize each row of AG so that it sums to 1.
In the example from above of the graph ◦— ◦—◦, we have

WG =

0 1 0
1
2 0 1

2
0 1 0

 .

WG maps a vertex to the average of all its neighbors in this space, i.e. eiWG = 1
degree(i)

∑
j:(i,j)∈E ej .

In the running example, if we start at the point e1 corresponding to vertex one, then we move to its
only neighbor, i.e. e1WG = e2. But if we start at e2, we move to the midpoint between e1 and e3, i.e.
e2WG = e1

2 + e3
2 = (0.5, 0, 0.5).

2.1 As a Random Walk (Markov Chain)

Imagine you start at a vertex i of the graph and randomly select a neighbor (uniformly, with equal
probability), and move to that neighbor. Then the row WG(i) gives the induced probability distribution
over these choices.

Indeed, if we have any vector v ∈ Rn with vi ≥ 0,
∑n
i=1 vi = 1, this gives a probability distribution

over the vertices oGImagine sampling a vertex from that distribution, then randomly picking an edge
and following it. What is the induced distribution on vertices? Well, the probability of landing on i is
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∑
j:(j,i)∈E vj

1
degree(j) = (vWG)i. That is, the ith component of the vector we get from multiplying v into

WG.

This is an example of a Markov chain on a finite state space with transition matrix WG. In a
Markov chain on a finite state space {1, . . . , n}, we have a transition matrix M ∈ Rn×n, where M(i, j) is
the probability of transitioning from i to j. Each row must be a probability distribution, i.e. nonnegative
entries summing to 1. This says that, starting at i, we pick the next step of the random walk (or the
next state of the Markov chain) from the probability distribution M(i, 1), . . . ,M(i, n).

Next question: what happens if we iterate this random walk for a long, long time? I.e., what does
the limit look like of vWm

G as m→∞? Does it matter what the starting distribution v is?

2.2 Stationary Distributions and Eigenvalues

A stationary distribution π ∈ Rn of a Markov chain with transition matrix M is a probability
distribution satisfying

πM = π.

In other words, if we draw a random vertex from π, then take a random step from the vertex, the
distribution of our final endpoint is again π.

From linear algebra, we recall2 such a vector is called a left eigenvector with corresponding eigen-
value 1. Given a transition matrix M , we name its n eigenvalues {λi} and sort them from largest to
smallest: λ1 ≥ λ2 ≥ · · · ≥ λn. The list λ1, . . . , λn is called the spectrum of M ; this is why this area of
research is called “spectral” graph theory.

In particular, of course, the normalized adjacency matrix WG is a type of Markov transition matrix.
The following gives some basic known facts about its eigenvalues.

Claim 1. The largest left eigenvalue of WG is exactly 1, and the smallest is at least −1 (which is achieved
if and only if G is bipartite). The multiplicity of 1, i.e. the number of eigenvalues that are 1, is equal to
the number of connected components of the graph.

Because the largest left eigenvalue is 1, we know that a random walk on a graph has at least
one stationary distribution. That is, there is some π such that πWG = π.

Exercise 3. For the running example graph, ◦— ◦—◦, can you find a stationary distribution? Confirm
that πWG = π.

3 Convergence to Stationary

Next, we will make some strong assumptions that imply there is exactly one stationary distribution and
the distribution of a random walk, over a long time horizon, converges to it. This is just an example to
show the flavor of these theorems and proofs in spectral graph theory; most such proofs are a bit more
intricate and advanced, usually going to a related matrix called the graph Laplacian (which we won’t
need here).

Claim 2. Suppose that every entry of the transition matrix M is strictly positive; then its eigenvalues
satisfy λ1 = 1 and |λi| < 1 for all i = 2, . . . , n.

Now consider starting from some distribution p(0) over the vertices and repeatedly applying a tran-
sition matrix M , so that after t steps, we get p(t) := p(0)M t.

Theorem 2. Suppose every entry of the transition matrix M is strictly positive and suppose that M is
a diagonalizable matrix. Let σ = 1−maxi=2,...,n |λi|. Then there exists a constant C such that for all t,
we have

‖π − p(t)‖1 ≤ C · n · e−tσ.
2In general we have a left eigenvector v with eigenvalue λ if vWG = λv.
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(Recall that ‖x‖1 =
∑
i |x(i)|.)

Proof. Let the eigenvectors of M be π, x2, . . . , xn and suppose without loss of generality that each vector
has ‖xj‖1 = 1. Because M is diagonalizable, its eigenvectors π, x2, . . . , xn span all of Rn, i.e. they are
linearly indpendent (note we are not assuming they are orthogonal!). So any starting point p(0), we can
write it as a linear combination of eigenvectors π, x2, . . . , xn:

p(0) = c1π +

n∑
j=2

cjxj .

Note the coefficients ci may be positive or negative. Then

p(t) = p(0)M t

=

c1π +

n∑
j=2

cjxj

M t

= c1π +
n∑
j=2

cjxjλ
t
j .

Now, we argue that c1 = 1. Because we have |λj | < 1 for j ≥ 2, the entire sum is converging to ~0 as
t→∞. So we have p(t) → c1π, and because both are probability distributions, we must have c1 = 1. So

p(t) = π +

n∑
j=2

cjxjλ
t
j .

Therefore, if we let C = maxj=2,...,n |cj |, then

‖π − p(t)‖1 =

∥∥∥∥∥∥
n∑
j=2

cjxjλ
t
j

∥∥∥∥∥∥
1

≤
n∑
j=2

|cj | · |λj |t · ‖xj‖1 triangle inequality

≤
n∑
j=2

C(1− σ)t because ‖xj‖1 = 1

≤ C · n · (1− σ)t

≤ C · n · e−σt, because 1− σ ≤ e−σ

To step back and appreciate this theorem: Even if the number of vertices of the graph is gigantic,
say n = 2d for some d, we can get convergence very close to the stationary distribution in only O(d/σ)
steps of the random walk. As long as σ isn’t too tiny, this is a small number of steps compared to n.

Exercise 4. Suppose M satisfies the assumptions of Theorem 2, i.e. has all positive entries and is
diagonalizable. Use Theorem 2 to argue that M has a single unique stationary distribution.

4 PageRank

The key idea of PageRank is to let G be the directed graph of hyperlinks on the web, where each vertex
is a webpage with edges to every page it has links to.
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Now we can imagine the Markov chain (random walk) of the normalized adjacency matrix WG. But
in PageRank, we make the following modification: with probability α, we jump to a new, completely
uniformly random webpage. With probability 1− α, we follow a random link on the current page.

This gives rise to the following transition matrix:

M(i, j) =
α

n
+ (1− α)WG(i, j).

One nice consequence is that, for α > 0, every entry is strictly positive and there is a unique stationary
probability distribution π of this random walk. This is the PageRank of G. In particular, for each
page i, its rank or score is π(i), with larger being better.

π has the following nice property, inherited from the equation πM = π:

π(j) =

n∑
i=1

π(i)M(i, j)

=
α

n
+ (1− α)

∑
i:(i,j)∈G

π(i)

degree(i)
.

This says the asymptotic probability of being on page j is the sum of two processes:

• With probability α, no matter where we are, we jump randomly, in which case there is a 1
n chance

of landing on page j.

• With probability 1 − α, we are on page i with probability π(i), and we jump to page j with
probability 1

degree(i) if there is a link (i, j).

Now, with billions of webpages, we cannot even store G in memory as an adjacency matrix, let alone
compute its powers exactly, but we still have ways to approximately sample from π; we’ll look at this
next.

5 Markov Chain Monte Carlo

We now will look briefly at a more general, powerful technique. The idea is that we need to sample or
estimate an integral from a challenging distribution over a very large space. We can’t write down the
distribution, but we have some info about it.

For example, suppose we want to sample a web page with probability proportional to the number

of words on the page. So if f(j) is the number of words on page j, we want π(j) = f(j)∑
i f(i)

. But the

denominator is expensive to compute, e.g. because of how many web pages there are.
(One could also ask about computing an expectation or integral of some function with respect to this

difficult distribution.)

Claim 3. Let p(0) be any distribution and p(t) = p(0)M t, where M is the transition matrix of a Markov
chain on a finite space. If M is connected (meaning any state i is reachable from any state j), then it

has a unique stationary distribution π, and as t→∞, the average p(1)+···+p(t)
t converges to π.

This suggests the general recipe for sampling once from π:

• Pick a vertex v(0) from some distribution p(0).

• Take steps according to M , obtaining v(1), . . . , v(t).

• Pick v uniformly at random from v(1), . . . , v(t).

If the task is drawing many samples from π (which is more common), one can take the entire sequence
of samples v(1), . . . , v(t). These will be correlated with each other (for example v(t−1) and v(t) are not
at all independent), but as a whole they will constitute a representative sample, for large enough t.
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Exercise 5. One thing we should not do is just take the final sample v(t). Why not?
Hint: consider a bipartite graph and suppose t is even.

The details of how to implement this recipe depend on the setting. In some cases M may be hard
to compute or sample from, and more work is needed. Next, we will look at a setting where the target
distribution π is “known” in a sense, but it’s so large that sampling from it is hard. So, we will set up
a Markov chain and execute the above recipe.

5.1 Metropolis Hastings

For a running example, think of a grid of points in high dimensional space, for example, the Boolean
hypercube {0, 1}k. (In other words, each “vertex” is labeled by a string of length k of zeros and ones;
there are 2k vertices.)

For this algorithm, we suppose that someone gives us a likelihood or weight function f : {1, . . . , n} →
R+, and asks us to sample points with probability proportional to f . So in this case we know the
probability distribution at each state u: it is

π(u) :=
f(u)∑
v f(v)

. (1)

The problem is that n is too large to compute the sum efficiently (and even if we knew it, it’s still not
obvious how to sample).

The idea is that we can construct an undirected graph on {1, . . . , n} and run a Markov chain that
converges to this stationary distribution π, without ever writing down π.

The first step is to come up with a graph. We want the following properties, for reasons we’ll see.

• We want the mixing time to be small, meaning that the random walk converges fast.

• We want the maximum degree, call it r, to to be relatively small.

• We want vertices to have edges to other vertices with similar “weight” f(v).

For the Boolean hypercube example, perhaps we create an edge (u, v) if we can get from u to v by
flipping one bit of the string. In some applications, it’s reasonable that if u and v are the same string
except for one bit, then their weights f(u), f(v) aren’t too different. The maximum degree is also only
k if we are in k dimensions, which is much smaller than the total number of vertices 2k.

Algorithm 1 Metropolis-Hastings on finite graph. The goal is to sample vertices with probability
proportional to f .

1: Input: oracle access to f : {1, . . . , n} → R+; oracle access to adjacency list of G on vertices {1, . . . , n};
maximum degree r of G.

2: Let u(0) be chosen uniformly at random from {1, . . . , n}
3: for some number of trials t = 1, . . . , T do
4: Let v1, . . . , v` be the ` neighbors of u(t−1)

5: Let v =

{
vi w.prob. 1

r

u(t−1) w.prob. r−`
r

6: if f(v) ≥ f(u(t−1)) then
7: Set u(t) = v.
8: else

9: Set u(t) =

{
v w.prob. f(v)

f(u(t−1))

u(t−1) o.w.
.

10: end if
11: end for

We can see that Algorithm 1 gives a Markov chain with

M(u, v) =
1

r
min

{
1,
f(v)

f(u)

}
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if (u, v) is in the graph, and M(u, v) = 0 otherwise.

To show that it has the target stationary distribution, we need the following lemma.

Lemma 1. For a Markov chain with transition matrix M , if strongly connected, if there exists a distri-
bution π satisfying

π(i)M(i, j) = π(j)M(j, i),

then π is the unique stationary distribution.

Note that this does not claim the stationary distribution always satisfies this relationship. For
example, in some graphs we may have M(i, j) > 0 while M(j, i) = 0, so it is impossible to satisfy.
However, Lemma 1 is useful because if we are able to construct π satisfying the condition, we know it
is the stationary distribution.

Theorem 3. If the Metropolis-Hastings graph is connected, then the stationary distribution of the
Markov chain with transition matrix M is π (Equation 1).

Proof. We just need to verify that the conditions of Lemma 1 are satisfied by the target distribution π.

Consider any edge (u, v) and suppose without loss of generality that f(u) ≥ f(v). Then M(u, v) = 1
r
f(v)
f(u) ,

while M(v, u) = 1
r .

So π(u)M(u, v) = f(u)∑
u′ f(u

′)
1
r
f(v)
f(u) = f(v)

r
∑

u′ f(u
′) .

Meanwhile, π(v)M(v, u) = f(v)∑
u′ f(u

′)
1
r .

These are equal, so the conditions of Lemma 1 are satisfied.

To conclude: Metropolis-Hastings gives us a general way to construct a Markov chain such that a
sample from it converges to the target distribution π that we wanted to sample from. Of course there are
lots of design questions left: how to chose the graph G and when you are able to access such a function
f . The answers to these vary depending on the problem being solved in practice.
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