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The Singular Value Decomposition (SVD) takes a matrix of data points and breaks it down into com-
ponents. The SVD can be viewed as a form of dimensionality reduction, as in particular it allows us to
approximate the original matrix by a simpler matrix of low rank. It has a number of related applications
as well.1

Objectives:

• Be comfortable with linear algebra required to state and understand the Singular Value Decom-
position.

• Understand the technical definition of the SVD of a matrix.

• Understand the intuition for singular vectors and singular values in terms of both linear algebra
and applications.

• Be able to explain how SVD can be applied for principal component analysis, low-rank approxi-
mation, and collaborative filtering.

1 Introduction

We have a collection of n vectors, each of which is a data point in Rd. As a running example, suppose
that each vector represents one person’s movie preferences, where the jth entry in the vector is a number
representing how much they like movie j, say, between 1 and 10.

We will collect these vectors as rows of a matrix A ∈ Rn×d. That is,

Aij = how much person i likes movie j.

If there are millions of people and thousands of movies, this matrix is extremely large. It would be
nice to have a smaller, simpler version of this matrix that still captures its essentials. Having such a
simplification or approximation could help with other tasks too, such as filling in missing entries (matrix
completion) – that is, estimating how much someone will like a movie that they haven’t yet seen.

1.1 A simple model

For intuition, imagine a very simple model where there are two main genres of movie: action and comedy.
Each movie j = 1, . . . , d can be described by two numbers,

• v1(j) =amount of action,

• v2(j) =amount of comedy.

Meanwhile, each person i = 1, . . . , n can be described by two numbers,

• u1(i) =how much they like action,

• u2(i) =how much they like comedy.

1Presentation inspired by [1], Chapter 3.

13-1



Now, suppose that how much person i likes movie j is simply the combination of these factors, i.e.

Aij = u1(i)v1(j) + u2(i)v2(j). (1)

We can collect all of the people’s summaries as a matrix U ∈ Rn×2, where column 1 is u1 and column
2 is u2. And we can collect all of the movie summaries as a matrix V ∈ Rd×2, where the columns are
v1, v2. So we can also write (1) as a product of two matrices:

A = UV ᵀ, (2)

where V ᵀ is the transpose of V , i.e. the matrix whose rows are the columns of V . This gives us (1), see
Exercise 1.

We can interpret the column v1 as the ratings of a hypothetical person who only likes action, and
v2 the ratings of someone who only likes comedy. Then a given person i’s ratings, which are row i
of the matrix A, are a linear combination of these, weighted by how much person i likes each genre,
(u1(j), u2(j)). Similarly, we can interpret the column u1 as the ratings of a hypothetical movie that only
consists of action, and u2 a movie that only contains comedy. A given movie j’s ratings, column j of A,
are a linear combination of these weighted how much that movie contains each genre, (v1(j), v2(j)).

Notice that we’ve taken A, a matrix with billions of entries, and fully described it as a product of
matrices with much fewer entries, U and V . This is one of the key properties of SVD.

Exercise 1. Check that, if A is defined by Equation (2), then Equation (1) holds.

1.2 From the simple model to the SVD

It turns out that we can make three assumptions without loss of generality about the columns of U and
V : they are unit vectors, they are orthogonal, and they are sorted in a certain order.

First, as long as neither column of U is zero, we can always renormalize them so that they are unit
vectors. If a1 = ‖u1‖2 and a2‖u2‖2, then we can let u′1 = 1

a1
u1 and u′2 = 1

a2
u2. U

 =

 | |
u′1 u′2
| |

[ a1 0
0 a2

]

Similarly, we can renormalize the columns of V to be unit vectors as well, i.e. if b1 = ‖v1‖2 and
b2 = ‖v2‖2, then  V ᵀ

 =

[
b1 0
0 b2

] [
— v′1 —
— v′2 —

]
Putting these together, (2) becomes

A = U ′D(V ′)ᵀ A

 =

 | |
u′1 u′2
| |

[ a1b1 0
0 a2b2

] [
— v′1 —
— v′2 —

]
.

Here the diagonal components of D, which are a1b1 and a2b2, represent how important action and
comedy respectively are to the average person’s preferences.

Second, we can generally assume that u1 and u2 are orthogonal, and similarly with v1 and v2. The
idea behind this assumption is, if we chose the genre categories correctly, then they are completely
independent, e.g. a person’s liking for comedy cannot be explained on average by how much they like
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action, or a movie’s amount of comedy cannot be predicted from its amount of action. If this were not
true, we could re-define the genres so that the first genre captures all of the variation in preferences in
one “direction”, while the second genre captures the variation in an orthogonal “direction”.

Third and finally, we can re-sort the genres so that a1b1 > a2b2. We re-shuffle the columns of U and
V accordingly, e.g. (comedy, action).

Takeaway. We will see that any matrix A can be written in the format above using a number of
“genres” equal to the rank2 of the matrix A. That is, we can always write A = UDV ᵀ where the
columns of U are orthonormal3, the columns of V are orthonormal, and D is a diagonal matrix with
positive entries σ1 = D11 > σ2 = D22 > · · · , etc.. Here (U,D, V ) is the singular value decomposition
(SVD) of A. The values σ1, σ2, . . . are the singular values. The columns of U are the left singular
vectors and the columns of V are the right singular vectors. Next, we will see how to construct the
SVD from any given input matrix.

2 Constructing the SVD

Given a matrix A ∈ Rn×d, not all zeros, we now construct its singular value decomposition. Define

v1 = argmax
‖v‖2=1

‖Av‖2.

In other words, we pick the unit vector that maximizes the total projection of A onto v. Now, let

σ1 = ‖Av1‖2,

a measure of how well aligned v1 is with the rows of A on average. Finally, let

u1 =
1

σ1
Av1,

i.e. the vector u1 ∈ Rn is a renormalized version of the projection. Note that u1(i) = 1
σ1

∑d
j=1Aijv1(j),

or in other words, u1(i) is a representation of how well row i aligns with v1.

Next, let
v2 = argmax

‖v‖2=1,v⊥v1
‖Av‖2,

where v ⊥ v1 means that v is orthogonal to v1, i.e. v · v1 = 0. Similarly, let

σ2 = ‖Av2‖2,

u2 =
1

σ2
Av2.

Repeat, where at each step ` we pick v` from the space of unit vectors orthogonal to all of v1, . . . , v`−1.
Stop after the step r where we have

A = UDV ᵀ,

where the columns of U are u1, . . . , ur, the columns of V are v1, . . . , vr, and D is a diagonal matrix with
diagonal entries Dii = σi, for i = 1, . . . , r. Then (U,D, V ) is the singular value decomposition of
A, the vectors u1, . . . , ur are the left singular vectors, the vectors v1, . . . , vr are the right singular
vectors, and the values σ1, . . . , σr are the singular values.

2The rank of a matrix is the maximum number of columns that are linearly independent, i.e. the size of the largest
subset of columns where none of them can be written as a linear combination of the others.

3A set of vectors are orthonormal if they are all orthogonal and all unit vectors.
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Remarks. An equivalent stopping condition is that we stop after r steps if, when we try to take step
r+ 1, we find σr+1 = 0. In other words, the maximum possible projection is zero (or the v` vectors span
all of Rd, i.e. r = d, and there is no way to pick an additional vector). We can show that r, the number
of singular values, is the rank of the matrix A.

It is possible for there to be a tie in choosing some v`, i.e. there are multiple unit vectors that are
equally good. Because of this, there is not necessarily a unique “the” singular value decomposition; there
could be many.

Movie-model interpretation. If Aij = how much person i likes movie j, then we can think of a unit
vector v ∈ Rd as a hypothetical person’s rating of all the movies. Let ai be the ith row of A, i.e. person
i’s ratings. The dot-product of v with ai represents represents the similarity. So ‖Av‖22 =

∑
i ai · v is

a measure of total similarity of all people in the dataset with v. So v1, the first right singular vector,
defines the “most-representative” hypothetical person.

Meanwhile, σ1 = ‖Av1‖2 is a measure of how well that hypothetical person aligns with everyone’s
preferences. And u1 = Av1/‖Av1‖2 is a measure of how similar each person in the data set is to v1, i.e.
u1(i) = 1

σ1
ai · v1.

We can interpret this process as defining a “stereotype” or a “genre” of movie, where v1 captures
the ratings of a hypothetical person who only cares about that genre. Then u1 captures how much each
person likes that genre, and σ1 captures the overall importance of that genre to people’s final ratings.
A very rough prediction of i’s rating for movie j is Aij ≈ σ1u1(i)v1(j), i.e. importance multiplied by i’s
liking for the genre multiplied by how much j contains of the genre.

Similarly, each additional iteration ` defines a new “most important genre remaining.” Out of
the space orthogonal to the preferences already explained by the first ` − 1 genres, it finds a “most-
representative” hypothetical set of preferences that align with the ratings in a direction not already
explained.

Exercise 2. Show that r, the number of singular values of A, is equal to the rank of A.

3 Low-rank approximation

The rank rank(A) of a matrix A is the size of the smallest set of orthonormal vectors such that every
row in the matrix is some linear combination of the vectors. In the movie-rating example, we can picture
a set of r = rank(A) idealized “basis” people who have some stereotypical preferences v1, . . . , vr, such
that every real person’s preferences are a linear combination of some of the basis people’s. If the rank of
a matrix is small, then every row is easy to explain or generate. Everything in this paragraph also holds
true if we replace “row” with “column”; in this case, we can picture idealized “basis” movies u1, . . . , ur
such that every movie’s ratings are a linear combination of some of the basis movies’.

In reality, however, we don’t expect A to always have low rank. There might be some noise or
idiosyncracies in preferences so that, even if A has a lot of low rank structure, its actual rank is very
high. In this case, we might like to uncover a simplified or idealized version of A with low rank. This
version might also be more tractable for performing computations, if it takes much fewer numbers to
describe.

Observe (see Exercise 3) that for any matrix A with rank r and SVD (U,D, V ), we have

A =

r∑
`=1

σ`u`v
ᵀ
` , (3)

where u`v
ᵀ
` is the outer product of the two vectors, i.e. the n× d matrix whose (i, j) entry is u`(i)v`(j).

In other words, A is the sum of r matrices, each of rank one:

A = σ1u1v
ᵀ
1 + · · ·+ σrurv

ᵀ
r .
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To see that each matrix has rank one, note that e.g. the jth column of the matrix σ1u1v
ᵀ
1 is equal to

the vector u1 multiplied by σ1 and v1(j). So each column is a multiple of u1 (and similarly each row is
a multiple of v1), so the rank of the matrix is one.

Now, the first matrix, σ1u1v
ᵀ
1 can be viewed as a rank-one approximation of the original matrix A.

In fact, it is in a sense the best possible rank-one approximation. Similarly, the sum of the first two
matrices, σ1u1v

ᵀ
1 + σ2u2v

ᵀ
2 , is in a sense the best possible rank-two approximation, and so on. The

“sense” is the following.

Fact 1. Let A = UDV ᵀ be the SVD; then for any k ≥ 1, the matrix

Ak :=

k∑
`=1

σ`u`v
ᵀ
`

is a solution to
argmin

A′:rank(A′)=k

‖A−A′‖F ,

where ‖B‖F :=
∑
i,j B

2
ij is the Frobenius norm.

Proof. If A′ has rank k, then there exists V ∈ Rd×k with orthonormal columns v1, . . . , vk such that, for
some W ∈ Rn×k, A′ = WV ᵀ. To see this, note that the ith row a′i of A′ can be written a′i =

∑k
`=1W`,iv`,

so it is a linear combination of the k orthonormal basis vectors. We will continue the proof using several
lemmas.

Lemma: Suppose A′ = WV ᵀ where the columns of V are orthonormal. For any fixed V , the optimal
choice of W is W = AV .
Proof of lemma: First of all, using that ‖x‖22 = x · x,

‖A−A′‖F =
∑
i

‖ai − a′i‖22

=
∑
i

(ai · ai − 2ai · a′i + a′i · a′i) .

Recalling that the v` are orthonormal and that a′i =
∑k
`=1Wi`v`,

ai · ai − 2ai · a′i + a′i · a′i = ‖ai‖22 − 2
∑
`

Wi`ai · v` +

(∑
`

Wi`v`

)
·

(∑
`

Wi`v`

)
= ‖ai‖22 − 2

∑
`

Wi`ai · v` +
∑
`

W 2
i`v` · v`

= ‖ai‖22 − 2
∑
`

Wi`ai · v` +
∑
`

W 2
i`.

By taking the derivative with respect to Wi`, we find the optimal choice is Wi` = ai · v`, so W = AV .

Lemma: If we set W = AV , then the problem is equivalent to selecting V to maximize
∑k
`=1 ‖Av`‖22.

Proof of lemma: Fix a row ai. Let the vector xi` be the projection of row i onto v`, i.e. xi` = ai ·v` v`
‖v`‖2 =

Wi`v`. Notice that

‖A−A′‖F =
∑
i

‖ai − a′i‖22 =
∑
i

‖ai −
∑
`

xi`‖22.

We have ai =
∑
` x

i
` +

(
ai −

∑
` x

i
`

)
, and using orthogonality of the x`, we have (i.e. a Pythagorean

Theorem)

‖ai‖22 =
∑
`

‖xi`‖22 + ‖ai −
∑
`

xi`‖22.
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The left side doesn’t depend on our choice of V , so minimizing ‖ai−
∑
` x

i
`‖22 is equivalent to maximizing∑

` ‖xi`‖22. In other words, our problem is to pick orthonormal v1, . . . , vk to maximize∑
i

∑
`

‖xi`‖22 =
∑
i,`

W 2
i,`‖v`‖22 =

∑
i,`

W 2
i,` =

∑
i,`

(ai · v`)2 =
∑
`

‖Av`‖22.

Completing the proof. By the above lemmas, all we have to show is that, over all choices of
orthonormal vectors, the SVD maximizes

∑k
`=1 ‖Av`‖22. Let v1, . . . , vk be any set of orthonormal vectors,

and let v∗1 , . . . , v
∗
r be all of the right singular vectors. Because they form a basis, we can write v` =∑

`′ α``′v
∗
`′ , where α``′ = v` · v∗`′ . Observe that 1 = v` · v` =

∑
`′ α

2
``′ , using orthonormality. Similarly, by

extending V to an orthonormal basis v1, . . . , vr, we have v∗`′ =
∑
` α``′v`, and 1 =

∑r
`=1 α

2
``′ ≥

∑k
`=1 α

2
``′ .

Then, using that the vectors Av∗1 , . . . , Av
∗
r are orthogonal (we claim this without proof; a good

exercise):

k∑
`=1

‖Av`‖22 =

k∑
`=1

‖A
∑
`′

α``′v
∗
`′‖22

=

k∑
`=1

‖
∑
`′

α``′Av
∗
`′‖22

=

k∑
`=1

∑
`′

α2
``′‖Av∗`′‖22

=
∑
`′

(
k∑
`=1

α2
``′

)
‖Av∗`′‖22.

Let β`′ =
∑k
`=1 α

2
``′ ≤ 1. We have

∑
`′ β`′ ≤ k. What choices of β1, . . . , βr maximize the following sum?

max
∑
`′

β`′‖Av∗`′‖22

By definition, ‖Av∗1‖2 ≥ · · · ≥ ‖Av∗r‖2. So the solution is β1 = · · · = βk = 1, βk+1 = · · · = βr = 0. We

conclude that the optimal solution has value
∑k
`′=1 ‖Av∗`′‖22, which is the value given by the SVD.

Now that we have proven Fact 1, we know how to produce an optimal rank-k approximation to A:

• Compute the SVD (U,D, V ).

• Take the first k singular values to get Uk ∈ Rn×k, Vk ∈ Rd×k, and Dk ∈ Rk×k.

• Compute Ak = UkDkVk.

Ak = UkDkVk Ak

 =


| |
| |
u1 · · · uk
| |
| |


 σ1 0

. . .

0 σk


 — — v1 — —

...
— — vk — —



Exercise 3. Prove that (3) holds.
Hint: Consider, for each i, j, the entry Aij = (UDV ᵀ)ij, and show it is equal to the (i, j) entry of

the right-hand side of (3).
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4 Other Applications

4.1 Principal component analysis (PCA)

The idea of PCA is to capture the key features or dimensions of a data set. It has many applications
and variants, beyond the scope of this lecture. Sticking with the movie dataset example, suppose we
wish to analyze the dataset to find out key trends that explain people’s movie preferences. We compute
the SVD (U,D, V ) and learn several things:

• The first right singular vector, v1, represents an idealized “genre” that best describes preferences
as a one-dimensional model. Looking at which movies j have larger values of v1(j) may help us
understand qualitatively what members of the “genre” have in common.

• The first left singular vector, u1, represents people’s preferences over this “genre”. This may help
classify people with a “viewer profile” as those who especially like or dislike it.

• The first singular value, σ1, measures how well v1 and u1 explain the data. The larger it is, the
better the explanation, generally.

• We can take additional singular vectors and values to obtain the next-most-important “genres”
and “viewer profiles”.

• By looking at the singular values σ2, . . . , we can estimate how important each genre is and how
well the rank-k approximation explains the data.

4.2 Collaborative filtering (matrix completion)

Suppose we are given a matrix A with some missing entries. In fact, this would typically be the case in
a movie ratings dataset, as not every person has seen and rated every movie. We would like to predict
the missing entries, which corresponds to guessing how a person would rate a movie if they watched it.
This could be the basis for a recommendation algorithm. In fact, the “Netflix Prize” was a million-dollar
competition held by Netflix from 2006 to 2009 for the best such algorithm on their data set. The winners
used an approach based on the Singular Value Decomposition, though much more sophisticated.

How does SVD help with these matrix completion problems, also known as “collaborative filtering”?

1. Given the matrix A, we first use a simple method to estimate the missing entries. For example,
use the average value of the rest of the row, or a simple linear predictor.

2. Call the full matrix with all entries estimated A′.

3. Compute the SVD A′ = UDV ᵀ.

4. Compute the low-rank approximation A′k = UkDkV
ᵀ
k .

5. Use the value of A′k(i, j) to estimate the missing entry i, j.

The idea is that A′k captures the hidden structure of A. For example, suppose that many people who
like movies j and j′ also like movie j′′. There may be a singular vector u` that has high values in all
three of these entries. Meanwhile, suppose person i likes movie j and j′, but hasn’t seen movie j′′. The
low-rank approximation may find that the best estimate for person i comes from a high weight on the
singular vector u`, which will result in a large entry in A′k(i, j′′).
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