
A Course in Graduate Algorithms Lecture 15

Zero-Sum Games

Designed by Prof. Bo Waggoner for the University of Colorado-Boulder Updated: 2023

Two-player zero sum games are not only interesting and important in game theory, but also as useful
models throughout mathematics and computer science. We will define these games in general and state
and prove von Neumann’s Min-Max Theorem for finite action spaces, using no-regret learning.1

Objectives:

• Define two-player zero-sum games.

• Understand mixed (randomized) strategies versus pure (non-randomized) strategies.

• Understand the statement of the Min-Max Theorem for mixed strategies and its leader-responder
interpretation.

• Know how to use online no-regret learning to compute equilibria in two-player zero-sum games.

1 Two-Player Zero-Sum Games

1.1 Definitions

Mathematically, a game is a model of interaction where strategic players select actions, then an outcome
occurs as a function of their actions. While they capture board games and similar games played for fun
or sport, they can also model situations such as competition among firms, routing decisions in a traffic
network, job markets, and more. A two-player game is defined by the following:

• Two action sets, A for player 1, call her Alice, and B for player 2, call him Bob.

• Two utility functions, u(a, b) for Alice and v(a, b) for Bob.

Alice chooses an action a ∈ A while Bob simultaneously chooses b ∈ B. Alice’s goal is to maximize her
utility u(a, b), while Bob’s goal is to maximize v(a, b). It is a finite game if A and B are finite sets.

Zero-sum. In general, the utility functions can be arbitrary, so Alice and Bob are not necessarily
opposed. An important special case is when their interests are exactly opposed:

Definition 1. A two-player game (A,B, u, v) is zero-sum if, for all a ∈ A, b ∈ B,

u(a, b) = −v(a, b).

In this case, we can specify the game by (A,B, u).

Another way to put it is that u(a, b) + v(a, b) = 0, i.e. Alice’s and Bob’s utilities always sum to zero.
In a zero-sum game, the better off Alice is, the worse off Bob is.

1Notes inspired by those of Aaron Roth at the University of Pennsylvania.

15-1

Examples. Rock-paper-scissors can be described as the following game. The action sets are A =
B = {rock, paper, scissors}. It is a zero-sum game, i.e. v(a, b) = −u(a, b). The utility function u is
summarized in the below matrix, where Alice is the row player (her strategy is to pick a row) and Bob
is the column player.

rock paper scissors
rock 0 -1 1
paper 1 0 -1
scissors -1 1 0

For example, when Alice plays rock and Bob plays scissors, Alice’s utility is u(rock,scissors) = 1,
given by the top row and third column. The matrix or normal-form representation will be a handy way
to describe zero-sum games.

Here is another zero-sum game, a battle of the bands. Alice knows how to play the Guitar and the
Drums, while Bob knows how to play the Violin and the Harmonica. Each of them has to pick one
instrument for the battle of the bands. As we can see, Guitar beats Violin by a lot, as Alice gets 3 utility
and Bob gets −3. But Violin beats Drums by quite a bit. Harmonica is a bit better than Guitar but
worse than Drums.

Violin Harmonica
Guitar 3 -1
Drums -2 1

1.2 Equilibrium

If the game consisted of just one player, Alice, then it would be an optimization problem. Alice would
pick a to maximize her utility, and we could call this her optimal action. However, when playing against
Bob, it is not clear what optimal means. If Bob plays b1, then Alice might have one optimal action
a1 = argmaxa u(a, b1). But if Bob plays b2, Alice’s optimal action (also called a best response) could be
a2 = argmaxa u(a, b2).

Without knowing what Bob will play, Alice’s best response is not well-defined. But similarly, without
knowing what Alice will play, Bob’s best response is not well-defined. Therefore, to analyze the game,
we need a solution concept. The standard approach in game theory is the idea of an equilibrium: a pair
of strategies where each player is already best-responding to the other, and neither could benefit from
switching.

Definition 2. In a two-player game (A,B, u, v), a pure-strategy equilibrium is a pair a∗ ∈ A, b∗ ∈ B
such that:

• a∗ ∈ argmaxa∈A u(a, b∗), i.e. Alice’s action is a best-response to b∗; and

• b∗ ∈ argmaxb∈B v(a∗, b), i.e. Bob’s action is a best response to a∗.

We can view an equilibrium as a prediction of what might happen when two players play a game.
Or, as a suggestion or guidance for a reasonable way to play the game. As the name suggests, equilibria
are related to stability : even if opponents do happen to know how the other is playing, they will
continue playing the equilibrium strategy. For example, if a game is played repeatedly many times,
then an equilibrium is a prediction of a stable point that could be played over and over. If it is not an
equilibrium, one of the players should want to switch the strategy next time they play.

Mixed-strategy equilibrium. Many games have no pure-strategy equilibrium. For example, you can
check that this is the case for rock-paper-scissors and battle of the bands as defined above (Exercise 1).
In such cases, one approach is to suppose that the players can randomize over their actions. A probability
distribution over actions is also called a mixed strategy, as opposed to a pure strategy of a single action.

15-2

For example, in rock-paper-scissors, it makes sense to pick an action from some distribution so that the
opponent doesn’t know exactly what we will play.

We use ∆X to denote the set of probability distributions on X.

Definition 3. Given a two-player game (A,B, u, v), its mixed extension is the game (∆A,∆B , ū, v̄)
where

• ū(p, q) := Ea∼p Eb∼q u(a, b) and

• v̄(p, q) := Ea∼p Eb∼q v(a, b).

From now on, we will drop the bars and just write u(p, q). We may also write u(a, q) := Eb∼q u(a, b) and
u(p, b) := Ea∼p u(a, b).

Definition 4. In a two-player game (A,B, u, v), a mixed-strategy equilibrium is an equilibrium
of the mixed extension, i.e. a pair p∗ ∈ ∆A and q∗ ∈ ∆B such that p∗ ∈ argmaxp∈∆A

u(p, q∗) and
q∗ ∈ argmaxq∈∆B

v(p∗, q).

In a zero-sum game, we can equivalently write Bob’s condition as q∗ ∈ argminq∈∆B
u(p∗, q), i.e. Bob

is trying to minimize Alice’s expected utility.

Generally, when one sees the term equilibrium or Nash equilibrium, it refers to mixed strategies rather
than pure strategies. It is a fact – Nash’s theorem – that a mixed-strategy equilibrium always exists for
any finite game. Sometimes we can also prove existence of equilibrium in a pure-strategy context where
A and B are nice convex sets, such as intervals on the real line. One can think of the mixed extension
and turning a discrete finite game into a more nicely-behaved “convex game” so that equilibria always
exist. However, we will not discuss more general convex games in this lecture.

Exercise 1. Prove that battle of the bands, as defined above, has no pure-strategy equilibrium.
Hint: Take each pair of actions (a, b) and show that pair is not an equilibrium.

Exercise 2. Verify that p∗ = q∗ = (1
3 ,

1
3 ,

1
3) is a mixed-strategy equilibrium of rock-paper-scissors.

2 The Min-Max Theorem

2.1 Order of play

Two-player zero-sum games have very special properties not shared by other kinds of games. We will
see that they have a value that Alice can gaurantee herself regardless of what strategy Bob plays, and
vice versa. This implies a surprising fact, that in any equilibrium, Alice must obtain that value (and
analogously for Bob), i.e. there are not better or worse equilibria. We will also see that the players can
commit to strategies simultaneously or one after the other, in either order, and the equilibria are the
same. Let us now consider this last property.

Suppose we change the game so that the players go one at a time:

1. Alice has to first pick her mixed strategy p ∈ ∆A and commit to it.

2. Bob learns p and then gets to decide on his mixed strategy q ∈ ∆B .

3. As usual, Alice’s payoff is u(p, q) and Bob’s is −u(p, q).

What is optimal play in this game? Well, for any choice p of Alice, Bob should try to respond with a
q that minimizes her utility, i.e. Bob solves minq u(p, q). Therefore, Alice should commit to a p that
maximizes this utility, i.e. Alice solves

max
p

min
q
u(p, q).

15-3

Now, imagine we switch the game up so that Alice plays second. Bob first commits to q, then Alice
learns q and gets to decide on p. In this case, we can use the same argument: for any q, Alice should
solve maxp u(p, q), so Bob should solve

min
q

max
p

u(p, q).

Which scenario is better for Alice? Intuitively, the second one: she gets to wait and pick p once she
has full information about what her opponent is doing. We can formalize this:

Lemma 1. It is (weakly) better for Alice to play second than first, i.e. in any zero-sum game,

max
p

min
q
u(p, q) ≤ min

q
max
p

u(p, q).

Proof. Let p∗ ∈ argmaxp minq u(p, q) be an optimal strategy for Alice when playing first. Then she can
guarantee herself at least as much utility when playing second: she simply ignores what Bob commits
to, and plays p∗. Mathematically,

max
p

min
q
u(p, q) = min

q
u(p∗, q)

≤ min
q

max
p

u(p, q).

Now the question is: how much better is it to go second? Suprisingly, the Min-Max Theorem will
show that it is not better at all. Alice can do exactly as well going first as second. We will show this
next.

Exercise 3. Consider the game where Alice plays second. Bob plays some mixed strategy q and Alice
solves for an optimal response p ∈ ∆A. Argue that Alice has an optimal response that is a pure strategy
a ∈ A, or in other words,

min
q

max
p∈∆A

u(p, q) = min
q

max
a∈A

u(a, q).

Hint: use that any optimal p is a distribution over some subset of pure strategies a1, . . . , ak. Recall the
definition of u(p, q).

2.2 The Min-Max Theorem

In fact, Alice does no better by playing second than she did by playing first.

Theorem 1. In a finite two-player zero-sum game (A,B, u),

max
p

min
q
u(p, q) = min

q
max
p

u(p, q).

Proof. Define

v1 = max
p

min
q
u(p, q) Alice’s utility when playing first,

v2 = min
q

max
p

u(p, q) Alice’s utility when playing second.

In Lemma 1, we showed v1 ≤ v2. It remains to show v1 ≥ v2. In fact, we will show that for all α > 0,
v1 ≥ v2 − α. This implies v1 ≥ v2.

Our proof will use online no-regret learning. Suppose in rounds t = 1, . . . , T :

1. Alice picks a mixed strategy pt.

15-4

2. Bob sees pt and best-responds, choosing strategy qt = argminq u(pt, q).

3. Alice draws a ∼ pt and Bob draws b ∼ qt.

4. Alice’s utility is u(a, b). Her expected utility is u(pt, qt).

We can cast this as an online learning problem for Alice with finite action set A. Alice will utilize the
Multiplicative Weights algorithm (MW). Define

Alice =
1

T

T∑
t=1

u(pt, qt) (1)

OPT = max
a∈A

1

T

T∑
t=1

u(a, qt). (2)

We can modify the utility so that it satisfies the assumptions for MW, and its regret guarantee gives the
following (see Exercise 4):

Lemma 2. Let M = 2 maxa,b |u(a, b)|. If Alice plays according to MW, then her average per-round
utility satisfies

OPT−Alice ≤ 2

√
2M ln |A|

T
.

Next, we have the following claims.

Lemma 3. v2 ≤ OPT.

Proof. Let q̂ = 1
T

∑T
t=1 q

t. Notice (Exercise 5) that for any p, u(p, q̂) = 1
T

∑T
t=1 u(p, qt).

v2 = min
q

max
p

u(p, q)

≤ max
p

u(p, q̂)

= max
p

1

T

T∑
t=1

u(p, qt)

= max
a∈A

1

T

T∑
t=1

u(a, qt) (Exercise 3)

= OPT.

Intuitively, in v2, Bob chooses q optimally knowing that Alice then gets to best-respond. In OPT, Bob
has chosen some sequence of strategies q1, . . . , qT and we consider the best response of Alice in hindsight.
The best Bob could have done is choosing qt = q for all t.

Lemma 4. v1 ≥ Alice.

Proof. In v1, Alice chooses p optimally, knowing that Bob will best-respond. In “Alice”, she is just
choosing a sequence p1, . . . , pT according to MW, and Bob will best-respond to each.

Alice =
1

T

T∑
t=1

max
q
u(pt, q)

≤ 1

T

T∑
t=1

min
p

max
q
u(p, q)

= v1.

15-5

Now we are ready to complete the proof of the Min-Max Theorem. Let any α > 0 be given. We

must show that v2 − v1 ≤ α. Choose T =
⌈

8M ln |A|
α2

⌉
.

v2 − v1 ≤ OPT− v1 (Lemma 3)

≤ OPT−Alice (Lemma 4)

≤ 2

√
2M ln |A|

T
(Lemma 2)

≤ α.

Since this holds for all α > 0, we have v2 − v1 ≤ 0 and therefore v2 ≤ v1 as desired.

Exercise 4. Prove Lemma 2, using the fact that MW guarantees regret at most 2
√

2T ln(N) with N
actions.

Hint: to apply MW, we should have losses in [0, 1] rather than utilities. Try letting M = maxa,b 2|u(a, b)|
and defining `ta = 1

2 −
u(a,qt)
M . Show that `ta ∈ [0, 1], then use the definition of MW’s regret to prove the

lemma.

Exercise 5. Let q̂ = 1
T

∑T
t=1 q

t. Show that for any p, u(p, q̂) = 1
T

∑T
t=1 u(p, qt). Notice the left side is

interpreted as playing p against the distribution q̂, while the right side is the average utility from playing
p over T rounds against the strategies q1, . . . , qT .

3 Corollaries

We can obtain a number of remarkable facts from the Min-Max Theorem and its proof. We will first
state the results, then prove them all together.

Corollary 1. Any two-player zero-sum finite game has a value

v∗ := max
p

min
q
u(p, q) = min

q
max
p

u(p, q).

In any equilibrium of the game, Alice’s expected utility is v∗ and Bob’s is −v∗.

Corollary 2. Given a two-player zero-sum finite game, for any p∗ ∈ argmaxp minq u(p, q) and any
q∗ ∈ argminq maxp u(p, q), the pair (p∗, q∗) is an equilibrium.

Corollary 3. An α-approximate equilibrium of a two-player zero-sum finite game can be computed in
time polynomial in |A|, |B|, 1

α . In particular, using the Multiplicative Weights algorithm as in the proof

of Theorem 1, the pair p̂ = 1
T

∑T
t=1 p

t and q̂ = 1
T

∑T
t=1 q

t form an α-approximate equilibrium for a large
enough choice of T .

Proof. If Alice plays p∗, then by definition of maxp minq u(p, q), her expected utility is at least v∗

regardless of what Bob plays. Therefore, Alice can guarantee utility at least v∗ by playing p∗. Therefore,
in any equilibrium, Alice’s utility is at least v∗.

On the other hand, by the same logic, Bob can guarantee himself utility at least −v∗ by playing q∗.
So in any equilibrium, Alice’s utility is at most v∗. Corollary 1 follows.

Next, Corollary 2 follows because in (p∗, q∗), Alice’s utility is v∗ = u(p∗, q∗). By definition of q∗,
there is no strategy Alice can switch to that increases her utility, i.e. p∗ ∈ argmaxp u(p, q∗). Similarly,
q∗ ∈ argminq u(p∗, q). So (p∗, q∗) are an equilibrium.

Finally, we argue that MW actually computes approximate equilibria, i.e. that minq u(p̂, q) ≥ v∗ − α
(so Alice is approximately best-responding) and maxp u(p, q̂) ≤ v∗+α (so Bob is as well). First, we can

15-6

view p̂ as an average utility for playing from each pt with probability 1
T , just as in Exercise 5. Second,

Alice only does better in this scenario than if Bob gets to respond to each pt individually:

min
q
u(p̂, q) = min

q

1

T

T∑
t=1

u(pt, q)

≥ 1

T

T∑
t=1

min
qt

u(pt, qt)

= Alice.

Putting this together with the proof of Theorem 1, and choosing T large enough,

min
q
u(p̂, q) ≥ Alice

≥ OPT− α
≥ v∗ − α.

So p̂ is an α-best response for Alice. Similarly,

max
p

u(p, q̂) = max
p

1

T

T∑
t=1

u(p, qt)

= max
a∈A

1

T

T∑
t=1

u(a, qt)

= OPT

≤ v∗ + α.

So q̂ is an α-best response for Bob.

4 Applications

4.1 Bounds for algorithms

Consider an optimization problem, such as maxizing a matching in a graph. It could be an online
problem. For each input size n, there are a set of possible instances B and a set of possible algorithms
A. Generally, these are finite (if extremely large) sets if we fix n. The performance of algorithm a ∈ A
on instance b ∈ B is u(a, b).

For example, in online bipartite matching, we know that the greedy algorithm a∗ can achieve
u(a∗, b) ≥ 1

2 for all instances b, or in other words,

min
b
u(a∗, b) ≥ 1

2
.

Often, we would like to bound the performance of any randomized algorithm. Since we can view a
randomized algorithm as a distribution p ∈ ∆A, we wish to compute

max
p∈∆A

min
b∈B

u(p, b).

By Lemma 1, and the observation of Exercise 3 that the inner minimization can be either over mixed
or pure strategies, we get

max
p∈∆A

min
b∈B

u(p, b) ≤ min
q∈∆B

max
a∈A

u(a, q). (3)

In this context, Equation 3 is known as Yao’s Lemma or Yao’s minimax principle. On the left side, we
fix a randomized algorithm p and consider its worst-case performance on any input. On the right side,
we fix a distribution over inputs q, and consider the best performance of any deterministic algorithm.

15-7

Therefore, to upper-bound the best possible performance of any randomzied algorith, we can simply
give a distribution q over inputs and consider the best possible determinstic algorithm that knows and
responds to that distribution. For example, in online matching, we can consider the “Z” graph where
the first arriving left-side vertex is connected to both right-side vertices, and the second arriving left-side
vertex is randomly connected to one of the right-side vertices. This distribution is q. The best possible
deterministic algorithm is to simply match the first arrival to its first neighbor, and match the second
arrival if possible. This gives maxa u(a, q) = 3

4OPT. By Yao’s Lemma, the best possible performance
guarantee of any randomized algorithm is therefore 3

4 .
A similar argument, extended to general input sizes, shows that no randomized algorithm can exceed

1− 1
e ≈ 0.6321 . . . for online bipartite matching.

Note that Yao’s Lemma (3) sometimes holds more generally that the Min-Max Theorem, e.g. for
infinite games. However, often the Min-Max Theorem also applies and (3) is an equality. This is
(roughly) the case in online bipartite matching, where there exists a randomized algorithm achieving
1− 1

e .

4.2 Machine learning

There are many places where zero-sum games arise in machine learning. One example is in Generative
Adversarial Networks (GANs), which are used to generate images and text. The idea there is to set up
a game between a learner (Alice) and discriminator (Bob). Alice’s strategy space A consists of, say,
images of faces. Bob’s strategy space B consists of classifiers that take in an image and classify it as
either real or fabricated.

The game proceeds as follows:

1. Alice produces an image a ∈ A, while Bob simultaneously produces a classifier b ∈ B.

2. We flip a coin.

• If heads, we give the classifier the fabricated image a.

• If tails, we give the classifier a real image a′ drawn randomly from a dataset.

3. Alice’s utility is 1 if Bob’s classifier predicts incorrectly, or 0 if Bob’s classifier predicts correctly.

4. Bob’s utility is the negative of Alice’s, i.e. it is a zero-sum game.

It was found that by training algorithms for Alice and Bob simultaneously, the “Alice” or learner
algorithm would learn to generate images that are very similar to real images. So by setting up and
solving a zero-sum game, we are able to accomplish a seemingly-unrelated machine learning task.

15-8

