
A Course in Graduate Algorithms Lecture 16

Linear Programming

Designed by Prof. Bo Waggoner for the University of Colorado-Boulder Updated: 2023

Linear programming is a general technique for solving a very large variety of problems. A linear program
is an optimization problem involving finding a vector x ∈ Rn that maximizes a linear function, subject
to a set of linear constraints. If we can write our problem down as a linear program, then we can use
a general-purpse LP algorithm to solve it. This lecture is only a brief pragmatic introduction to linear
programming, and there is much more (such as duality theory) that we will not cover here.

Objectives:

• Know the definition and three key components of a linear program.

• Be able to write a given problem down as a linear program.

• Know the definition of integer linear programming and the difference.

1 Linear Programs

1.1 Example

Suppose we have a set of resources we can use to produce different kinds of goods:

• Our mining operations produce 100 units of wood and 50 units of stone per day.

• We can produce a house using 5 units of wood and 10 units of stone.

• We can produce a wagon using 4 units of wood and 1 unit of stone.

• We make a profit of 10 per house and 7 per wagon.

• Our goal is to decide how many houses and how many wagons to produce per day1 to maximize
profit per day.

We can write this down as an optimization problem with three key components: variables, an objective,
and constraints.

• The variables are x1, the amount of houses per day, and x2, the amount of wagons per day, that
we will decide to produce.

• The objective is to maximize profit per day. Based on the above, profit per day is 10x1 + 7x2.

• The constraints are that we only have so much wood and stone available per day. Specifically,
we must satisfy 5x1 + 4x2 ≤ 100, because each house uses 5 units of wood and each wagon 4.
Similarly, 10x1 + x2 ≤ 50. Finally, note that we can’t produce “negative” houses or wagons, so
x1 ≥ 0 and x2 ≥ 0.

We can write this optimization problem as follows:

max
x1,x2

10x1 + 7x2

s.t. 5x1 + 4x2 ≤ 100

10x1 + x2 ≤ 50

x1, x2 ≥ 0

1This production is on average, i.e. it’s okay to produce at a non-integer rate such as 1.5 houses per day.

16-1



This is an example of a linear program (LP). We will see that there are general-purpose algorithms
to solve any optimization problem of this form. So we do not need to design a specific algorithm for our
production problem. We just need to write it as an LP, and then we can use a solver.

1.2 Definitions

A linear function on Rn is one that can be written as f(x) = w · x for some vector w ∈ Rn, i.e. a
function of the form f(x) = w1x1 + · · ·+ wnxn.

A linear program is an optimization problem with the following three components:

• n variables, which we will usually represent as x ∈ Rn.

• m constraints, where each constraint has one of three possible forms: f(x) ≤ β, or f(x) ≥ β, or
f(x) = β. In all cases, f is a linear function and β ∈ R.

• An objective, which is one of two possible forms: max g(x) or min g(x). In both cases, g(x) is a
linear function.

The optimization problem is to choose values for the variables, that satisfy all the constraints, in order
to optimize the objective (maximize or minimize, as the case may be).

1.3 Feasible and optimal solutions

A solution x is feasible if it satisfies all of the constraints; we call all such x the feasible region. If
the feasible set is empty, we call the linear program infeasible. In this case, the constraints ultimately
contradict each other; it is not possible to satisfy all of them at once. Here is an example of an infeasible
linear program:

max
x

x1 + x2

s.t. x1 ≥ 10

x2 ≥ 10

x1 + x2 ≤ 15.

A solution x is optimal for a maximization objective max g(x) if (1) x is feasible, and (2) for any
feasible solution x′, we have g(x) ≥ g(x′). Optimality for a minimization problem is analogous.

For any linear program, there are three mutually exclusive possibilities:

1. The program is infeasible.

2. The program is feasible and has at least one optimal solution.

3. The program is feasible but has no optimal solution.

In the last case, what happens is that we can find feasible solutions with arbitrarily high objective
value (for a maximization problem, or arbitrarily low for minimization). Such a linear program is called
unbounded. Here is an example of an unbounded linear program:

max
x

x1

s.t. x1 ≥ 10.

When we have an optimal solution x∗, intuitively, we have pushed x∗ as far as possible in the
direction of the objective, up to the limits imposed by the constraints. If a constraint holds at x∗ with
exact equality, we say that constraint is binding. Otherwise, we sometimes say the constraint is slack,
and the amount of slack is the difference between the left and right sides of the inequality.

16-2



Exercise 1. Given one example each of a linear program that is (a) infeasible, (b) feasible and with an
optimal solution, (c) feasible and unbounded.

2 Standard form

A linear program is in standard form if (1) it is a maximization problem, (2) all of the variables are
constrained to be nonnegative, and (3) except for nonnegativity, all constraints are less-than-or-equal
constraints. We can write such a program as follows:

max
x

c1x1 + · · · cnxn

s.t. A11x1 + · · ·+A1nxn ≤ b1
. . . ≤

...

Am1x1 + · · ·+Amnxn ≤ bm
x1 ≥ 0

. . . ≥
...

xn ≥ 0.

Here, of course, some of the ci and the Aij parameters may be zero. As hinted by the subscripts, we
can write an LP in standard form more succinctly as

max
x

c · x

s.t. Ax ≤ b
x ≥ ~0.

Here x ∈ Rn, c ∈ Rn, b ∈ Rm and A ∈ Rm×n.

Proposition 1. Any linear program can be converted into standard form such that the feasible set and
optimal solutions (if any) are the same as the original.

Proof. First, if the objective is a minimzation min c ·x, we can convert it into a maximization max−c ·x.
A solution x minimizes c ·x if and only if it maximizes −c ·x. So, now we have a maximization problem.

Second, we can take any variable xi that is not constrained to be nonnegative, and create two
nonnegative variables, y and z, satisfying xi = y − z. In the objective and all constraints, we replace
the term cixi with ciy + (−ci)z. Observe that for any value of the original variable xi, there are values
y, z ≥ 0 such that xi = y− z, so that the objective value is the same and all new constraints are satisfied
if and only if the old constraints were.

Finally, we can convert all constraints to ≤ constraints. We first replace equality constraints a ·x = β
with a pair of inequality constraints a · x ≤ β and a · x ≥ β. Then, for any ≥ constraint a · x ≥ β, we
can simply replace it with (−a) · x ≤ −β.

Exercise 2. Convert this LP into standard form:

min
x

3x1 − 2x2

s.t. x1 + x2 = 10

x1 ≥ 0.

Exercise 3. Sometimes we are given inequalities with variables on both sides, such as x1 ≥ x2. How
can such constraints also be converted to standard form?

16-3



3 Geometry and Algorithms

Our main focus for linear programming will be on how to solve our problems by writing them as LPs.
Then, we can apply standard algorithms or packages for solving the LPs. We won’t go into much detail
on how those algorithms work, but we will overview the basics now.

3.1 Geometry

Constraints. Consider a constraint such as a · x ≤ β. The set of variables satisfying this constraint
is called a halfspace, because the hyperplace {x : a · x = β} cuts Rn into two pieces, and the variables
satisfying the constraint consist of everything on one side of the hyerplane.

An LP’s feasible region consists of the x that satisfy a set of constraints. The feasible region is
therefore an intersection of a finite number of halfspaces. Such a set is called a polyhedron. For example,
in this linear program:

max
x

x1 + · · ·+ xn

s.t. xi ≥ 0 (for all i)

xi ≤ 1 (for all i),

the feasible region is the hypercube in Rn.

Objectives. Focusing on maximization objectives, a linear objective is represented by a vector c ∈ Rn
such that the objective value is c ·x. The set of points with a given objective value, for example 2, consist
of a hyperplane c · x = 2. Solving the linear program consists of finding the “farthest” hyperplane that
still intersects the feasible set.

Figure 1 illustrates these concepts with the following linear program:

max
x

2x1 + x2 (1)

s.t. x1 + 2x2 ≤ 5

x1 − 2x2 ≤ 4

5x1 + x2 ≥ 1.

Exercise 4. At an optimal solution to LP 1, see Figure 1, which constraints are binding and which are
slack?

3.2 Simplex-like algorithms

In the example of Figure 1, we saw that the optimal solution occurred at a vertex of the feasible
polytope. In general, it is possible that one entire “side” of the feasible set is optimal, if the objective
is perpendicular to the constraint. However, the following useful fact holds (we state it without proof
here):

Fact 1. If a linear program in standard form is feasible and not unbounded, i.e. has an optimal solution,
then in particular there is at least one optimal solution that is a vertex of the feasible polyhedron.

This suggests that we can solve LPs by only looking at the vertices. One way to think of a vertex
is as a place where a certain subset of constraints all bind, i.e. all hold with equality. So one algorithm
is a brute-force approach that considers each possible subset of constraints, checks if their intersection
exists and is feasible, and returns the resulting vertex with highest objective value. The following fact
(also stated without proof) enables a much more efficient approach.

Fact 2. Given a linear program in standard form that is feasible and not unbounded, and given a vertex x
of the feasible region that is not optimal, there is a “neighboring” vertex that has strictly higher objective
value. By neighboring, we mean exchanging one constraint out of the binding set and one constraint into
it.

16-4



Figure 1: An illustration of LP 1.

x2

x1

x1 + 2x2 = 5 

x1 + 2x2 ≤ 5 

(a) The line 2x1 + x2 = 5 and the halfspace of points
x satisfying 2x1 + x2 ≤ 5.

x2

x1

x1 + 2x2 ≤ 5 

5x1 + x2 ≥ 1 x1 - 2x2 ≤ 4 

(b) A polyhedron, i.e. intersection of three halfspaces.

x2

x12x1 + x2

(c) The objective function max 2x1 + x2, represented
as the vector (2, 1).

x2

x12x1 + x2

2x1 + x2 = 9.25

(d) The optimal solution to LP 1, x1 = 4.5, x2 = 0.25,
with an objective value of 9.25.

16-5



Using Fact 2, we obtain the Simplex Algorithm:

1. Check that the problem is feasible.

2. Find an initial feasible vertex.

3. Check if the current vertex is optimal.

4. If not, move to a neighboring vertex with strictly higher objective function.

5. Repeat steps 3-4 until optimality is reached or we find the problem is unbounded.

Steps 1 and 2 are not trivial and involve solving an easier linear program as a subroutine. We may find
the problem is unbounded if we search for a “neighboring” vertex to step to, and find essentially that
we can step “infinitely far”.

Complexity. Many variants of the simplex algorithm have been studied in depth since its introduction
in about 1950. First, note that the feasible polyhedron may have exponentially many vertices in n and
m. For example, the hypercube in Rn is described by 2n constraints but has 2n vertices. So an algorithm
that visits vertices sequentially might run in exponential time.

And in general, the simplex algorithm could indeed visit exponentially many vertices. Its worst-case
runtime is not polynomial. However, in practice, it is often found to be very efficient. A linear program
generally needs to be carefully constructed in a very adversarial way for simplex to take exponential
time. Whether simplex is the best choice can depend on the structure of the problem.

3.3 Interior-point algorithms

The simplex method worked by exploring vertices on the boundary of the feasible region. Interior-point
methods do the opposite: they move candidate solutions “through” the interior of the space. We will
describe one of the simplest and oldest methods: the Ellipsoid Algorithm. An ellipsoid is a sphere
whose axes have been stretched; in other words, a set of the form {x :

∑
i αix

2
i ≤ 1} for some coefficients

{αi}.

1. Find an initial large ellipsoid that contains the feasible region.

2. Check if the center x̂ of the ellipsoid is feasible.

3. If it is feasible, add a new constraint c · x ≥ c · x̂. Cut the ellipsoid in half with this constraint and
define a new ellipsoid that covers the new, smaller feasible region.

4. If it is not feasible, find a constraint that x̂ violates. Cut the ellipsoid in half with this constraint
and define a new ellipsoid that covers the new, smaller feasible region.

5. Repeat steps 2-4 until the ellipsoid is so small that it essentially contains just one point; return
that.

As with the simplex method, the initial step of bounding feasible solutions is not trivial. It is also clear
that the final step, termination, involves a number of details. The broad point, however, is that at each
stage, the ellipsoid shrinks in size significantly, which implies that the method halts after polynomially
many steps.

Complexity. The ellipsoid method runs in polynomial time. This proves that linear programming
is solvable in polynomial time, something not known to be true until the ellipsoid method in 1979. It
was originally interesting only theoretically, as the simplex algorithm was found to generally be faster in
practice. Other interior-point methods besides the ellipsoid method have become competitive in practice.
Whether they are the best depends on the problem structure.

16-6



Separation oracles. It has been observed that the ellipsoid method can run efficiently even in some
cases where there are exponentially many constraints. (For example, there may be a large family of
constraints that we could theoretically enumerate, but would take a long time to write down.) All
that the ellipsoid needs is an “oracle” that, given x̂, decides whether it is feasible and, if not, returns
one constraint that it violates. Thanks to this observation, one can sometimes solve problems that are
apparently too large in polynomial time by showing that they have such a “separation oracle”.

4 Applications and Examples

Profit-maximizing production. We can first generalize the example from the introduction. We are
producing n kinds of products per day using m kinds of resources. A unit of product i requires Aij
amount of resource j. We obtain bj amount of resource j per day. We can sell a unit of product i for a
profit of ci. Our goal is to decide how much of each product to produce, x, to maximize profit:

Profit-Maximizing Production

max
x

c · x

s.t. Ax ≤ b
x ≥ ~0.

This is an example of a packing problem: an LP in standard form where all of the parameters A, b, c are
nonnegative.

Min-cost procurement. Via a relationship called duality, which we will not cover, this problem is
closely tied to the previous one. There are again n kinds of products and m kinds of resources. But
now, we are buying the resources, and the price we pay for a unit of resource j will be yj . Now our
variables are y instead of x. Recall that there are bj units of resource j per day, so our total payment
will be b · y, and we want to minimize this payment. But we have to pay enough. Specifically, we know
that the firm can make a profit of ci by combining A1i units of resource 1, . . . , Ami units of resource
m. So we must be sure that the total payment we make for that set of resources is at least ci. Some
thought reveals that this yields a constraint of Aᵀy ≥ c, where Aᵀ is the transpose of the matrix A from
the Profit-Maximizing Production problem.

Min-Cost Procurement

min
y

b · y

s.t. Aᵀy ≥ c
y ≥ ~0.

This is an example of a covering problem: a minimization LP with only nonnegativity and ≥ constraints
where all of the parameters Aᵀ, b, c are nonnegative.

Packing and covering problems turn out to be related to each other via LP duality, a deep and useful
theory that unfortunately this lecture does not have time to explore. But we will mention that the above
two LPs – Profit-Maximizing Production and Min-Cost Procurement – are duals of each other, so their
optimal objective values are actually equal to each other and there are a number of other relationships
between their feasible and optimal solutions.

4.1 Zero-sum games

Consider the problem of finding an optimal strategy in a finite two-player zero-sum game. Alice and
Bob have finite strategy spaces. Alice’s utility is uij if she plays her ith action while Bob plays his jth.

16-7



We want to find a probability distribution x for Alice that solves

max
x

min
j

∑
i

xiuij .

First, we need to write down the constraints on the solution variables: a probability distribution is a
nonnegative vector that sums to one. ∑

i

xi = 1

x ≥ 0.

Now, however, we need to translate the objective into a linear program. A nice trick is to translate an
expression of the form minj f(j) = α into a statement of the form “for all j, f(j) ≥ α.” If we are trying
to maximize the variable α, then it will be set to the minimum f(j), as required.

Optimal Strategy in Zero-Sum Game

max
x,α

α

s.t.
∑
i

xiuij ≥ α ∀j∑
i

xi = 1

x ≥ ~0.

5 Integer-Linear Programming

Often, we have a problem that is written as a linear program, plus an extra constraint that some of the
variables must be integers. This is called an Integer-Linear Program (ILP).

For example, consider maximum matching. We have an undirected graph G = (V,E). We create a
variable xuv for each edge {u, v} ∈ E. The variable is one if we include the edge in our matching and
zero otherwise. Therefore, the optimization problem is:

Maximum Matching

max
x

∑
{u,v}∈E

xuv (2)

s.t.
∑
v

xu,v ≤ 1 ∀u ∈ V

xuv ∈ {0, 1} ∀{u, v} ∈ E.

The last constraint says that every xuv must either be zero or one. Another way to phrase it is as follows,
where Z is the set of integers.

xuv ≤ 1 ∀{u, v} ∈ E
xuv ≥ 0 ∀{u, v} ∈ E
xuv ∈ Z ∀{u, v} ∈ E.

If we delete the final constraint, that xuv be integral, we obtain a linear program. This is called taking
the LP relaxation of an ILP: we “relax” the constraints on the variables to allow them to be real
numbers. However, it would not solve maximum matching, as shown by the example of the triangle
graph (Exercise 5).

16-8



In general, solving integer-linear programs is NP-hard. One can formulate NP-complete problems
such as 3-SAT as ILPs. Therefore, we do not have efficient algorithms to solve ILPs in polynomial
time. For some problems, like maximum matching, we can use other polynomial-time algorithms rather
than ILP solvers. For other problems, like 3-SAT, no known polynomial-time algorithm exists. For
such problems, often, we can get a pretty good approximation or even solve it exactly using linear
programming techniques. For example, one approach is to first solve the LP relaxation, then “round” the
solution so that the variables are integers again. However, this is only a heuristic and is not guaranteed
to optimally solve the ILP.

Exercise 5. Consider the matching ILP, Program 2, on the triangle graph (i.e. complete graph on three
vertices). What is the size of a maximum matching in this graph, i.e. the solution to the ILP?

Now consider the LP relaxation. Find a solution whose value is strictly higher than the value of the
ILP.

Hint: the solution should assign numbers strictly between 0 and 1 to at least some of the variables.

You may recall that we can apply max-flow algorithms to solve maximum matching on bipartite
graphs. In this case, the Integrality Theorem implied that an optimal solution would indeed be integral,
i.e. send flow either zero or one on each edge, i.e. cause each edge to either be matched (xuv = 1) or not
(xuv = 0). So in the case of bipartite graphs, the value of the ILP and its LP relaxation are the same.
However, Exercise 5 proves that this is not true on general graphs.

5.1 ILP example: scheduling

Integer-linear programs are extremely useful in practice. Many scheduling problems, for example, need
integer solutions: a worker should either be scheduled for a shift or not, an airplane must either take
one route or another; etc. Often, in such problems, exact optimality is not required. So although they
may be NP-hard, it suffices to use an LP approach to efficiently obtain a reasonably good solution.

Problem setup. Suppose you are in charge of a chess tournament with k players. You will schedule
a series of rounds where some of the players are paired up in each round. Each player should play each
other player exactly twice over the course of the tournament. A player can have a “bye” in a round and
not play anyone, for example, if there is an odd number of players.

Variables and constraints. To formalize the problem, let xijt = 1 if player i plays j in round t, and
xijt = 0 otherwise. Then we have the following constraints:∑

j,t

xijt = 2 ∀i (i plays j twice)

∑
j

xijt ≤ 1 ∀i, t (i plays at most one game/round)

xijt = xjit ∀i, j, t (if i plays j, then j plays i)

xijt ∈ {0, 1} ∀i, j, t (a game is either played or not).

But that is not all. Some of the players have notified you of conflicts. They will not be able to play in
certain rounds. Suppose we have a set C of the conflicts (i, t).∑

j

xijt = 0 ∀i, t ∈ C.

Oh, and another thing. Players don’t like to play each other twice in a row in back-to-back rounds.

xijt + xij(t+1) ≤ 1 ∀i, j, t.

16-9



Objective. If the goal is just to find a feasible schedule, then we can actually put anything in as our
constraint, even ~0, and ask a solver to find a solution. But suppose that you would like to minimize the
number of rounds needed to run the tournament. How can we capture that with a linear objective? We
can create binary variables {yt} that are one if round t is needed and zero otherwise. This gives extra
constraints

yt ∈ {0, 1} ∀t.

How can we tell if round t is needed? With k players, the total number of games in a given round is at
most 2k, because we count a game once for both players. So we can add the constraint∑

i,j

xijt ≤ 2kyt ∀t.

Now, there are two cases: if there are no games at all in round t, then we can set yt = 0. If there are
any games at all, we must set yt = 1.

Finally, our objective is

min
x,y

∑
t

yt.

Takeaways. LPs and ILPs are useful because they allow us to express the idiosyncratic constraints of
our particular problem, such as no re-playing on back-to-back days. We throw all of these constraints
together and invoke the solver. Of course, if the problem comes back infeasible, we may have to change
our approach.

16-10


