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The recent advent of human computation — employing groups of non-experts to solve problems — has
motivated study of a question in mechanism design: How do we elicit useful information when we are unable
to verify reports? Existing methods, such as peer prediction and Bayesian truth serum, require assumptions
either on the mechanism’s knowledge about the participants or on the information structure of participants
for eliciting private information from the participants. Meanwhile, however, there are simple mechanisms in
practice such as the ESP Game that seem to require no such assumptions, yet have achieved great empirical
success. We attack this paradox from two directions. First, we provide a broad formalization of the problem of
information elicitation without verification and show that, without assumptions on designer knowledge or
participants’ information, there do not exist mechanisms that can truthfully elicit the private information of
the participants for this setting. Second, we define and analyze the output agreement class of mechanisms, an
extremely broad but simple mechanism in which players are rewarded based on the metric distance between
their reports. Output agreement makes no assumptions on designer knowledge or participants’ information
and thus cannot be “truthful”. We resolve the paradox by showing that it is useful: It elicits the correct answer
according to the common knowledge among the players. We conclude with an analysis of the assumptions and
results of various popular mechanisms for information elicitation without verification.
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1. INTRODUCTION
The emerging field of human computation has harnessed the intelligence of an unprece-
dentedly large population of people for the purpose of solving computational tasks. For
example, in the now-classic ESP game [von Ahn and Dabbish 2004], which has collected
semantic labels for over one hundred million images1, the image labeling task is turned
into a fun, online game: Two players are simultaneously shown an image and asked
to independently type words related to the image; whenever a word is typed by both
players, they score some points and move on to the next image.

1http://news.bbc.co.uk/2/hi/technology/7395751.stm
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39:2 B. Waggoner and Y. Chen

The ESP game illustrates many of the common challenges in human computation
settings. First, the computational primitives, people, are self-interested. Players of the
ESP game are interested in scoring points and winning the game, and may behave
strategically. Second, the participants often do not have preferences for outcomes of the
computation. Whether the ESP game obtains descriptive labels for images does not
necessarily affect the utility of its players. Third, the quality of contributions often
is not verifiable. The answers may be subjective or too costly to be practical to verify,
especially at large scales. These qualities characterize many other human computation
settings, including crowdsourcing marketplaces such as Amazon Mechanical Turk and
CrowdFlower, where requesters commonly “hire” human workers to solve problems
that are difficult for computers.

Because such systems involve self-interested agents, they naturally motivate a ques-
tion in mechanism design: What types of information may be elicited in such systems,
and how? Yet the problem lacks two key features that are leveraged to align incentives
in many mechanism design settings: the case where participants have preferences over
the outcome, as in auctions or facility location problems; and the case where the designer
may objectively verify some information related to participants’ inputs, as with proper
scoring rules and prediction markets.

In this paper, we formalize the information elicitation without verification setting to
capture mechanism design for problems that do not have these two characteristics. In
this problem, a designer is interested in obtaining useful answers to a query from a
group of participants who have private information or knowledge about it; however, the
designer cannot verify the answers provided. In the past decade, many mechanisms in
this category have been proposed, including the peer-prediction method [Miller et al.
2005] and Bayesian truth serum (BTS) [Prelec 2004]. The goal of these approaches is
to strictly incentivize participants to report truthfully. Here, for a given query and set
of information available to the participant, truthfulness specifies a particular “best”
answer that fits the mechanism designer’s objectives. (Usually, this is just the “signal” or
information observed by the participant.) Such approaches reward a participant based
on not only her report but also reports of other participants and can, under certain
conditions, achieve a truthful equilibrium.

However, these mechanisms have strong limitations. For example, peer prediction
requires the designer to know the information structure of all participants, while the
equilibrium of BTS depends on restrictions on the information structure of participants2;
this has inspired extensions [Witkowski and Parkes 2012a,b] that attempt to relax
these assumptions. However, despite such efforts and a broad variety of other results in
the literature, all proposed mechanisms for information elicitation without verification
require some such assumptions for their results to hold.

Curiously, this contrasts with practical experience in which simple, direct methods
such as the ESP Game seem to make no such explicit restrictions, yet still elicit useful
data. In fact, their ability to extract the “wisdom of the crowd” has been in many cases
a remarkable success despite their use of mechanisms with little theoretical justifi-
cation. This observation seems to be in tension with the theoretical literature, where
mechanisms tend to be more complex and require restricted information structures or
specialized designer knowledge to achieve positive results.

This paper. Here, we address this conundrum on both fronts. We begin by showing
that the assumptions made in the literature are not frivolous: Without restrictions on
the mechanism’s knowledge about the participants or on the nature of the participants’
information, there is no truthful mechanism for eliciting information without verifi-

2We provide a description and comparison of these methods in Section 6.
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cation. This resolves the search for an equally powerful elicitation mechanism with
fully relaxed assumptions. We also show that, even with such assumptions, (almost) all
mechanisms have bad equilibria in which the designer learns nothing from the player’s
actions. These impossibility results can be extended to cover all mechanisms in the
literature for this setting.

This raises the question of how to reconcile these impossibility results with the
success of simple, practical mechanisms such as the ESP Game. We provide an answer
by formally defining and analyzing the output agreement class of mechanisms, inspired
by von Ahn and Dabbish [2008]. These mechanisms ask players to compute and report
some query, compare their responses in some way (e.g., a distance metric), and pay
players based on how closely their answers “agree”. This covers the ESP Game, for
example, but also captures a large class of games beyond those originally noted by von
Ahn and Dabbish. For example, requesters on Mechanical Turk may pay a participant
more if their answer to a query matches the answer of another participant (or of the
majority of participants). More complex scenarios are also possible: Ask participants
to report probability distributions over a random variable, paying them based on the
relative entropy (KL-divergence) of their reports; ask participants to transcribe an audio
clip of speech to text, paying them based on the Hamming or Levenshtein distance
between responses; and so on.

Output agreement mechanisms do not require the mechanism designer to have any
knowledge about participants and make no assumptions on the player information
structure. Therefore, by our impossibility results, they are not “truthful”, but we show
that they are nevertheless useful: They elicit the correct answer to a query according
to common knowledge among participants. This result is quite positive in a human
computation setting, where it seems natural to ask questions to which most or all
participants would be expected to know the answer.

Output agreement is simple, has been in use in crowdsourcing for a decade, and
includes some of the most prominent examples of human computation mechanisms.
However, this work is the first to provide a general game-theoretic analysis and formal
explanation of its success. One reason for this may be that the result requires generaliz-
ing the traditional notion of truthfulness to capture and quantify situations in which
agents respond according to some, rather than all, of their knowledge. We formalize
this criterion as specificity. Mechanism design often considers mechanisms that com-
pute approximately optimal solutions, yet the literature focuses on a binary criterion
of truthfulness when evaluating agent reports. This work reveals the fundamental
limitations imposed on elicitation problems by truthfulness; it also demonstrates the
positive results obtainable with a more nuanced approach.

Contributions. This work makes the following conceptual contributions. First, it
provides the first formal definition and general analysis of the problem of information
elicitation without verification. This includes broad impossibility results whose proofs
illuminate structural features of the setting, including the key difficulty of eliciting
expert knowledge. Second, it generalizes the criterion of truthfulness of player reports
to capture the specificity or amount of information according to which a player reports; it
then applies this criterion in a space where truthfulness is impossible but revelation of
useful information is nevertheless desirable and achievable. To our knowledge, this work
is the first in mechanism design to make such a distinction on player reports. Third, it
formalizes and analyzes the broad, popular class of output agreement mechanisms. The
results both provide novel insights and crystallize empirical intuition by demonstrating
that output agreement elicits common knowledge.

The work makes two technical contributions. First, we prove broad impossibility
theorems. Primarily, we show that no mechanism can elicit truthful responses with
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strict incentives unless it has knowledge of the information structure or is restricted to
particular types of player information. Second, we provide an analysis of the output
agreement class of mechanisms. In addition to the primary equilibrium analysis, we
examine player inference processes and note extensions such as introducing a trusted
player for equilibrium selection and various mechanisms on many players.

The discussion includes an analysis of various mechanisms in the literature; the
comparison of assumptions and results provides context to the results and shape to the
general setting of information elicitation without verification.

1.1. Related Work
We are broadly concerned with mechanisms for eliciting information. Thus, our work is
somewhat related to recent work on information elicitation in the presence of ground
truth [Lambert et al. 2008; Lambert and Shoham 2009; Lambert 2011] as well as on
the design of human computation mechanisms when the quality of contributions is
verifiable, e.g. using an auction or contest [e.g. Jain et al. 2009; Chawla et al. 2012].

Prior work in information elicitation without verification includes notably the Peer
Prediction method [Miller et al. 2005] (without a common prior [Witkowski and Parkes
2012a]) and the (robust [Witkowski and Parkes 2012b]) Bayesian truth serum [Prelec
2004]; these are most closely related to output agreement, and we give an overview
and comparison of these mechanisms in Section 6 and more details in Appendix C. The
literature also includes a series of work by Jurca and Faltings; often, the focus is on using
automated mechanism design for objectives such as budget minimization [Jurca and
Faltings 2006], collusion-resistance [Jurca and Faltings 2007a, 2009]; and robustness to
outside preferences [Jurca and Faltings 2007b]. Jurca and Faltings [2008] provides an
online (dynamic) mechanism that is not individually truthful but yields an accurate
aggregate with many agents. Other approaches focus on observations drawn i.i.d.
from an unknown distribution in R [Lambert and Shoham 2008; Goel et al. 2009]; we
overview these mechanisms in Appendix C.

Our work examines the theoretical properties of output agreement games. This
term was introduced by von Ahn and Dabbish [2008], with a primary example being
the ESP Game [von Ahn and Dabbish 2004]. Such games have been investigated
experimentally [Weber et al. 2008; Huang and Fu 2012].

But to our knowledge, there has been no theoretical analysis of the general output
agreement setting. Jain and Parkes [2008] consider the special case of the ESP Game,
but introduce a very ESP-Game-specific model: Players first select an effort level;
based on this level, nature randomly samples a list of words from a dictionary to
produce a report. This introduces specific restrictions on player strategies (indeed, our
results show that they must make some such restriction to achieve strict incentives).
In contrast, the output agreement class defined here covers a far broader setting than
image labeling (for example, reports are points in an arbitrary metric space). Further,
we do not make any such assumptions on player strategies; our focus is on examining
the nature of play by unrestricted rational agents.

2. A GENERAL MODEL OF INFORMATION ELICITATION WITHOUT VERIFICATION
Here, we formally define mechanisms for information elicitation without verification.
In this setting, there is a set of players, each holding some private information. A mech-
anism designer interested in some computational task queries each player separately
(i.e., without communication between players). The designer selects an outcome of the
mechanism and assigns monetary transfers to each agent. Thus the mechanism, when
applied to particular players, induces a Bayesian simultaneous-move game.

We adopt the general states of the world model, which has been widely used in
economics for modeling private information [Aumann 1976; McKelvey and Page 1986;
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Nielsen et al. 1990; Ostrovsky 2009]. There is a finite set of possible states of the world
Ω, shared by all players. An event is a subset of Ω; for example, the event Q ⊆ Ω could
be “it is raining outside” and would consist of every state of the world in which it is
raining. Nature selects a true state of the world ω∗ ∈ Ω; an event Q is said to occur if
ω∗ ∈ Q. Thus, the true state of the world implicitly specifies all events that occur or do
not: whether it is raining, whether Alice speaks French, whether P = NP, . . . .

A player’s knowledge is specified by a prior distribution P [ω] on Ω along with a
partition Πi of Ω. A partition of a set Ω is a set of nonempty subsets of Ω such that every
element of Ω is contained in exactly one subset. For example, both {{ω1}, {ω2, ω3}}, and
{{ω1, ω2}, {ω3}} are partitions of {ω1, ω2, ω3}. When the true state of the world is ω∗,
each player i learns the element of their partition that contains ω∗, denoted Πi(ω

∗).
Informally, i is unsure which state in Πi(ω

∗) is the true state of the world; more precisely,
i updates to a posterior distribution Pr [ω | Πi(ω

∗)] = Pr [{ω} ∩Πi(ω
∗)] /Pr [Πi(ω

∗)]. In
line with literature on information elicitation, Πi(ω

∗) will be referred to as i’s signal.
(In mechanism design terms, it is player i’s type.)

Throughout, we let the the set of states Ω and the number of players n ≥ 2 be fixed.
A particular set of n players is modeled by an information structure I =

(P [ω] ,Π1, . . . ,Πn), where each Πi is a partition for player i and all players share the
prior P [ω]. I is common knowledge; this is the standard Bayesian game setting. We use
I to denote the set of valid information structures on Ω with n players.

A mechanism M for information elicitation without verification contains the following
components:

— A set Ai of actions for each player i. We generally consider an action ai ∈ Ai to be a
report or answer to the mechanism’s query.

— A set of outcomes O. An outcome o ∈ O can be any result for the computational task,
such as some aggregation of player’s reports or a vector consisting of all reports.

— A choice function fM : I × A1 × · · · × An → O that specifies the outcome of the
mechanism on a given information structure and set of player actions.

— For each player i, a reward function hMi : I×A1×· · ·×An → R. When the information
structure is I and each player j reports aj , player i’s utility is defined to be equal to
hMi (I, a1, . . . , an).

For simplicity, we will let the action and outcome spaces be implicitly specified by the
functions and refer to a mechanism as M = (fM , hM1 , . . . , hMn ).

Given these definitions, we define a game for information elicitation without verifica-
tion to be a pair G = (M, I) consisting of a mechanism and an information structure.
Given a mechanism M , we refer to the set {G = (M, I) : I ∈ I} as the games induced
by M or the different settings of M . A mechanism elicits a property (under certain
conditions) if that property holds for every game induced by that mechanism (subject
to those conditions); e.g., “Bayesian truth serum elicits a truthful equilibrium when
signals are conditionally independent.”

Strategies and equilibria. In a game G = (M, I), a strategy for player i is a mapping
si that specifies, for each element Πi(ω) of i’s partition, a probability distribution on Ai.
In state ω∗, i learns element Πi(ω

∗) of his partition and draws an action ai ∼ si(Πi(ω
∗)).

A strategy profile (s1, . . . , sn) is a Bayes-Nash Equilibrium (or just equilibrium) of the
game G if every player’s strategy si is a best response to s−i (the profile with si omitted):
For every state of the world ω∗ and for all i, the probability distribution si(Πi(ω

∗)) on
Ai is an optimal solution to

max
s′i(Πi(ω∗))

∑
ω∈Πi(ω∗)

Pr [ω | Πi(ω
∗)]E

[
hMi (I, s1(Π1(ω)), . . . , s′i(Πi(ω

∗)), . . . , sn(Πn(ω)))
]
,
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where the inner expectation is taken over the actions aj drawn from each sj(Πj(ω)), j 6=
i, and ai drawn from s′i(Πi(ω

∗)). The strategy profile (s1, . . . , sn) is a strict equilibrium
if every si is the unique best response to s−i.

Comparison with general mechanism design setting. The above definitions encode
the two requirements for a setting of information elicitation without verification. First,
players do not have preferences over outcomes: Their utilities do not depend on the
outcome o of the mechanism, but only on their reward. Second, ground truth is not
available: The mechanism’s choice function fM and reward functions hMi do not depend
on the true state of the world, but only on the actions played and (possibly) the informa-
tion structure. Because fM does not affect incentives, we will not specify the particular
choice of fM in the rest of the paper; however, it serves a vital purpose as the goal of
such mechanisms is to compute or produce a useful output.

Modeling knowledge. Following the seminal work of Aumann [1976], we have modeled
players’ private information using partitions of the state space. Another common
approach to modeling private information is the “signals” model in which nature selects
some hidden event and there is a common prior over the joint distribution of players’
signals conditional on the event. This model is used in peer prediction, for example. The
two models are known to be equivalent in that each can model any scenario described
by the other. (For completeness, this is proved in Appendix A.)

However, the partitions-of-the-state-space model allows a more intuitive understand-
ing of players’ common knowledge. This makes both the impossibility results in Section 3
and the analysis of output agreement mechanisms in Section 5 far simpler and more
straightforward. Given partitions {Π1, . . . ,Πn}, the common-knowledge partition Π is
defined to be the meet of these partitions. The meet of a set of partitions of Ω is the
finest partition of Ω that is coarser than each individual partition. Partition Ψ is coarser
than partition Γ (equivalently, Γ is finer than Ψ) if each element of Ψ can be written as
a union of elements of Γ. (i.e., each element of Ψ is partitioned by a subset of Γ.) In this
case, Ψ may also be called a coarsening of Γ.

Informally, an element Π(ω) of the common-knowledge partition is a set of states (an
event) such that, when the state of the world ω∗ is in Π(ω), all players know that this is
the case, and all know that the others know that this is the case, and so on ad infinitum.
For two players with partitions {{ω1}, {ω2, ω3}} and {{ω1}, {ω2}, {ω3}} for example, the
common knowledge partition Π is {{ω1}, {ω2, ω3}}. If the second player has partition
{{ω1, ω2}, {ω3}}, then Π is just {{ω1, ω2, ω3}}.

To model information that is elicited, we may associate a mechanism M with a query
T = (T1, . . . , Tn), where each Ti is a function mapping a distribution on Ω to a set of
probability distributions on Ai. Intuitively, Ti will specify the “correct” or “truthful”
report for player i for a given posterior belief. For example, this could be to report the
posterior distribution itself, or the expected value of some random variable, or the set of
states on which the posterior has positive probability (that is, i’s signal). More generally,
it might specify multiple valid reports or valid distributions over reports; this covers
cases where a player may report either correct answer in case of a “tie”, is asked to
compute a function to within a certain error bound, or is asked to compute a randomized
function, e.g. a query on a differentially private database.

3. IMPOSSIBILITY RESULTS
3.1. The prevalence of uninformative equilibria
In information elicitation without verification, the goal is to design mechanisms with
“good” equilibria in which information is revealed. However, it has previously been
noted informally and observed for individual mechanisms or special cases [Lambert
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and Shoham 2008; Jurca and Faltings 2005; Della Penna and Reid 2012] that such
mechanisms often also have equilibria that are “bad” in some way. The conjecture that
this holds more generally may be considered something of a suspected folk theorem
in the literature. The following characterization formalizes this intuition in a very
broad setting and for very “bad” equilibria: those in which absolutely no information
is revealed. The characterization uses a game of complete information induced by
“stripping away” the information structure from a Bayesian game.

Definition 3.1. A strategy si for player i is uninformative if for all ω, ω′, si(Πi(ω)) =
si(Πi(ω

′)). An equilibrium (s1, . . . , sn) is uninformative if si is uninformative for all i.

Definition 3.2. For any Bayesian gameG = (M, I) for information elicitation without
verification, let G′ denote the induced simultaneous-move game of complete information
where each player i selects and reports an action ai ∈ Ai and receives a payoff of
hMi (I, a1, . . . , an). A strategy in G′ is a probability distribution over actions; a profile of
best response strategies is a Nash equilibrium.

THEOREM 3.3. A game G of information elicitation without verification has an
uninformative equilibrium if and only if there exists a Nash equilibrium in G′.

PROOF. We show a one-to-one correspondence between the two. First, we note that
strategy sets in G′ are vectors of probability distributions (p1, . . . , pn) from which
players draw their actions. Second, we note that uninformative strategy sets in G
are determined uniquely by a vector of distributions (p1, . . . , pn), because for each i
and for all ω, ω′ ∈ Ω, si(Πi(ω)) = si(Πi(ω

′)) = pi. Therefore, there is a one-to-one
correspondence between strategy sets in G′ and uninformative strategy sets in G. But
each player i’s reward for a realized profile of actions (a1, . . . , an) is identical in G′ and
in G (by construction of G′). So when each player j draws an action from pj , drawing
actions from to pi maximizes i’s expected utility in G′ if and only if it does so in G. This
completes the proof.

COROLLARY 3.4. The following mechanisms for information elicitation always have
uninformative equilibria:

(1) Those where each Ai is finite.
(2) Those where each Ai is compact in some metric space and each hMi is continuous.
(3) Those for which (a) an equilibrium always exists and (b) each hMi does not depend

on the information structure.

PROOF. (1) and (2) follow because in each case G′ satisfies the sufficient conditions
for existence of a Nash equilibria in (respectively) Nash [1951] and Glicksberg [1951].
For (3), consider such a mechanism M , i.e., for any profile of reports (a1, . . . , an) and for
all I, Î, we have that each hMi (I, a1, . . . , an) = hMi (Î, a1, . . . , an). Let I have Πi = {Ω}
for all i; let G = (M, I). It is immediate that, since G has an equilibrium, G′ has an
equilibrium. But G′ is identical to Ĝ′ for any Ĝ = (M, Î), since rewards do not depend
on I.

No mechanism in the literature avoids this issue; an interesting problem for future
work might be to identify a useful mechanism and associated setting that do (carefully
avoiding the conditions of e.g. Corollary 3.4). In the meantime, two common solutions
are to endeavor to make “good” equilibria focal in some sense (for instance, the ESP
Game randomizes player matchings so that the image is the players’ only coordinating
device), and to introduce some small amount of objective verification, such as evaluating
a small proportion of answers. A method that combines both approaches is to introduce
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trustworthy players who always play a “good” strategy [Jurca and Faltings 2005]. We
briefly discuss this approach for output agreement mechanisms in Section 5.2.

3.2. Assumptions required for truthfulness
We identify two desirable properties of a mechanism for information elicitation without
verification. First, it has a “truthful” equilibrium in all of its induced games; restriction
to certain types of information structures is not required. Second, the choice function
and payoff functions do not depend on the information structure, but only on the actions
taken; the designer is not required to know the information structure of the participants.

Peer prediction satisfies the first criterion, but violates the second (requiring full
knowledge by the mechanism designer). Many mechanisms in the literature have been
constructed with an explicit goal being to relax the second assumption; for instance,
Bayesian truth serum. However, all such mechanisms violate the first criterion. For
example, they assume (as in BTS) that players’ signals are conditionally independent.

Here, we show that such violations were unavoidable: no strictly truthful mechanism
can satisfy both criteria.3 (It is of note that non-strict incentives are achieved by simply
asking all players to report truthfully and paying them a constant amount.)

To prove this result, we require a formal definition of “truthful” strategies for general
mechanisms.4 This is captured by a query T . Given T , we say that player i’s strategy si is
truthful if, for every ω∗ ∈ Ω, si(Πi(ω

∗)) ∈ Ti(Pr [ω | Πi(ω
∗)]). An equilibrium (s1, . . . , sn)

is truthful if every si is truthful. A query T is considered trivial if, for every setting
of M , every player has a probability distribution on actions that is truthful for every
signal she receives. We require T to be non-trivial.

A primary goal is to make truthful equilibria strict; this ensures that making the
truthful report is the unique best response. But when a query allows for multiple
truthful reports (or multiple truthful distributions over reports) for a given signal, a
designer might be interested in a somewhat weaker notion than strict equilibrium:
Any of these truthful reports (or distributions) may give equal utility, i.e., be a best
response, as long as non-truthful ones give strictly less. However, our proof shows that
even this weaker goal is still not achievable without assumptions. Formally, a truthful
equilibrium (s1, . . . , sn) is strongly truthful if, for each i, if s′i is a best response to s−i,
then s′i is truthful. Every strict, truthful equilibrium is strongly truthful, and when the
query T specifies singleton sets, the criteria are equivalent.

THEOREM 3.5. Fix T and let M = (fM , hM1 , . . . , hMn ) be a mechanism for information
elicitation without verification. If each hMi does not depend on the information structure,
then M does not elicit a strongly truthful equilibrium.

PROOF. Formally, suppose that, for any (a1, . . . , an), hMi (I, a1, . . . , an) =
hMi (I ′, a1, . . . , an) for all I and I ′. The approach will be to consider a player whose
truthful response depends on which signal she receives, but who is much better in-
formed than her opponents. We will then construct a simple game where her best
responses are the same for different signals she receives. This will imply that in some
state, she has a non-truthful best response.

Consider, by nontriviality, a P [ω], player i, and partition Πi such that, for any
probability distribution pi on Ai, there is some state in which pi is not truthful, i.e.

3An interesting case is the relaxation of the assumption that beliefs are consistent with existence of a common
prior; such models are considered by Lambert and Shoham [2008]; Witkowski and Parkes [2012a]. Theorem
3.5 extends to such cases once players’ best responses are well-defined.
4One could simply consider a report of a player’s signal to be truthful and all other reports untruthful.
However, a revelation-principle argument would not suffice to extend this result to cases where players
compute on inputs rather than merely report information, or settings where information is compressed into
reports; this motivates our far more general treatment of truthfulness.
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pi 6∈ Ti(Pr [ω | Πi(ω
∗)]) for some ω∗. Consider a game with prior P [ω] in which player i

has partition Πi and all other players j have a trivial partition Πj = {Ω}.
Let (s1, . . . , sn) be a truthful equilibrium. Pick a particular state ω∗; in this state,

player i plays according to the distribution p∗i = si(Πi(ω
∗)). Since (s1, . . . , sn) is an

equilibrium, p∗i maximizes expected utility against s−i in state ω∗. But s−i is constant
on all states of the world (since players 2, . . . , n receive the same signal in every state).
So construct the strategy s′i where, for every ω, s′i(Πi(ω)) = p∗i . We immediately have
that s′i is also a best response to s−i.

But by nontriviality, there is some state ω′ ∈ Ω such that p∗i 6∈ Ti(Pr [ω | Πi(ω
′)]). Thus,

s′i is not a truthful strategy; hence (s1, . . . , sn) is not a strongly truthful equilibrium.

It is of note that a query is not part of the definition of a mechanism; rather, the role
of a query in the proof is merely to capture some classification of strategies into truthful
and non-truthful. We might ask, for a given mechanism M and for a given query T ,
whether M can truthfully elicit T with strict incentives. Theorem 3.5 shows that, for
every such pair (M,T ), the answer is in general no unless the mechanism’s rewards
depend on the information structure. The construction of the proof also illustrates
the exact difficulty in an information elicitation setting: expert knowledge. Player 1’s
knowledge of events was strictly more specialized than that of the other players; since
they could not distinguish certain events, 1 could not be strictly incentivized to report
truthfully according to these events.

4. FORMALIZING PLAYER SPECIFICITY
Theorem 3.5 demonstrates the limitations of truthful mechanisms in this setting.
But in mechanism design, truthfulness is generally only a means to an end: eliciting
useful information. Furthermore, truthfulness is a binary property, while information
is complex: If an agent predicts “warm” weather, is she being untruthful, or merely
imprecise? Here, we approach this problem by generalizing truthfulness to specificity
of player reports, capturing the following question: What knowledge does a player use
in reporting an answer to a query? To our knowledge, this work is the first to consider
such an extension to the traditional notion of truthfulness.

Definition 4.1. Fix a mechanism M and query T and let Π̂ be a partition of Ω. A
strategy si for player i is Π̂-specific if:

(1) Π̂ is a coarsening of player i’s partition Πi; and
(2) for every state ω∗, si(Πi(ω

∗)) ∈ T
(

Pr
[
ω | Π̂(ω∗)

])
.

This definition provides nice properties that one might associate with “weak” truthful-
ness. First, it requires a player report according to an event that occurs: Π̂(ω∗) contains
ω∗. For example, given that it is August, a player may report according to the event
“it is summer”, but will not report as though it were spring. Second, it is consistent
across each element of Π̂. For example, if a player reports according to the month being
“August or July” when the month is August, then it makes the same report in July.
Meanwhile, the granularity of the information is given by Π̂. For example, we could have
month-specific (August versus July) or season-specific (summer versus fall) information.

There are three levels of specificity of primary interest: Πi-specific or private-
information-specific or just truthful; {Ω}-specific, always reporting according to the
prior; and Π-specific or common-knowledge-specific strategies.
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5. OUTPUT AGREEMENT MECHANISMS
Here, we provide a formal definition and game-theoretic analysis of the output agree-
ment class of mechanisms. We focus primarily on the two-player setting, showing that
the mechanisms elicit common-knowledge-specific responses with strict incentives. We
then examine the structure of equilibria in the game and consider player inference
processes, followed by mechanisms for many players. We rely on the definitions in
Sections 2 and 4.

Definition 5.1. A two-player output agreement mechanism M is a mechanism for
eliciting information without verification, defined as follows. The mechanism designer
announces a report space A = A1 = A2 and an associated query T where T1 = T2 (we
will abuse notation by just writing T rather than Ti). The designer selects a distance
metric d on the space A and a monotonically decreasing reward function h : R≥0 → R.
Each player i makes a report ai ∈ A and is paid hMi (I, a1, a2) = h(d(a1, a2)).

This definition assumes that the reward function is symmetric in that both players
receive the same payoff and that it depends only on the distance between reports
and not on the identity of the reports. These restrictions are natural and desirable in
many cases; symmetry provides fairness and simplicity while independence of location
reduces incentives to bias toward particular reports. However, it may be of interest to
examine other settings in future work.

We focus on singleton queries: those that, given a posterior distribution, specify
exactly one correct response. (Formally, for any posterior p(ω), T (p(ω)) = {q} where q
puts full support on some particular a ∈ A.) These queries capture many natural cases,
especially where there is structure to the report space as imposed by a distance metric.
In Rn, for instance, the Euclidean distance is a natural choice; in audio transcription,
a natural structure might be given by the Levenshtein distance. We then discuss
extensions.

THEOREM 5.2. For any singleton query T , there is an output agreement mechanism
eliciting a strict equilibrium that is common-knowledge-specific for T .

PROOF. For each player i, let si be a Π-specific strategy with respect to T ; that
is, si(Πi(ω

∗)) ∈ T (Pr [ω | Π(ω∗)]). Since Π is the common knowledge partition, we
have that in every state ω∗, s1(Π1(ω∗)) = s2(Π2(ω∗)). Furthermore, by assumption,
T (Pr [ω | Π(ω∗)]) puts full support on some report a.

By definition, any reward function is monotonically decreasing as a function of
distance between reports; let us select a reward function that is strictly decreasing.
In any state, both players’ strategies put full support on the same report; thus, each
player does strictly worse by drawing from any other distribution. Thus (s1, s2) is a
strict equilibrium.

We may generalize to cases where there are many possible truthful reports; in some
cases, however, weaker incentives are obtained. We illustrate the generalization using
the ESP Game as an example. The report space consists of lists of image tags; players
are rewarded some number of points if their lists have any tags in common, or no points
if their lists do not. The query of the ESP Game would specify, for given beliefs, any list
containing a “relevant” tag for the image according to those beliefs. There exist equilibria
that are Π-specific, but with weak incentives; for example, both players reporting
matching lists with some relevant and some irrelevant tags. However, there also exists
an equilibrium with incentives that are strict in the sense of strong truthfulness as
defined in Section 3.2: Each player’s strategy is to report a list of tags that are all
relevant according to common knowledge. Then either player would receive the same
number of points by switching to another list as long as it includes some overlapping,
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relevant tags; but each is strictly worse off to deviate to an “untruthful” list with no
relevant tags. (An interesting question is whether such a mechanism is more effective
than a stricter reward rule that strictly incentivizes reporting the single “best” list.)

5.1. Structure of equilibria and player inference
Here, we examine player inference in output agreement games, with the following
motivation. Mechanisms for elicitation without verification generally present players
with a query specifying the correct response according to given beliefs. In the literature,
it is standard to consider cases where this query is made focal by the mechanism in
some way and examining the properties of the equilibria that follow. However, in output
agreement, this standard approach gives rise to an unusual effect: the resulting sets of
truthful strategies are not necessarily equilibria. If player 1 is presented with a given
query, she might initially consider a Π1-specific strategy. But she knows that player 2
should play a best response, which in general is not necessarily Π2-specific; and then
she (player 1) should switch to a best response to that strategy, and so on. We refer to
this the process of computing a sequence of best-response strategies as player inference.
It is of note that this process does not consist of players taking or observing actions;
rather, it is the hypothetical process of a rational agent computing the optimal strategy
to play.5 We do not necessarily claim that such best-response inference is descriptive
of how such games are actually played or prescriptive of how players ought to play.
However, analyzing output agreement in the standard information-elicitation-without-
verification setting poses the question of how rational players might respond to a given,
focal query. An example player inference process is given in Figure 5.1; it gives an
example where players are asked to report the most likely realization of a random
variable, which may be either F or 4. We revisit the example in Proposition 5.5.

Ideally, such an inference process, beginning with a private-information-specific
report, would converge to the equilibrium of the common-knowledge-specific report, and
it would do so regardless of which player “begins” the process. (It always converges to
some ε-equilibrium for any ε; this is proved in Appendix B.) Here, we show that such
convergence does occur when eliciting the mean of a random variable. However, this
turns out not to be the case for eliciting the median or the mode, as the example in
Figure 5.1 might have already suggested.

PROPOSITION 5.3. Let t be a random variable taking values in Rn. There is an
output agreement mechanism for eliciting the mean of t such that any sequence of
best-response strategies, beginning with a Πi-specific strategy, converges to a Π-specific
equilibrium.

In our context, a random variable taking values in some space X is a mapping t : Ω→ X
where t[ω] specifies the value of t when the state of the world is ω. Thus the query for
eliciting the mean in Rn is T (p(ω)) = Eω∼p t[ω].

PROOF. We select d to be the Euclidean distance and h to be any affine transforma-
tion of −x2. This choice ensures that a player’s best response is to report her expected
value of her opponent’s report. More formally, it is straightforward to verify that the

5Two related concepts that arise in other settings are best-response dynamics and fictitious play, in which
players play against each other repeatedly and best-respond to (respectively) the opponent’s previous action or
empirical distribution of past actions. However, these concepts are primarily applied to understand behavior
of non-rational agents in repeated games of complete information. On the other hand, we are interested in
inference of rational players, and it may be unnatural in a Bayesian game to think of a repeated setting
where nature draws a new state of the world from the same prior, or of asking players to report responses to
the same query repeatedly.
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ω1

P [ω1] = 0.40

t = F

ω2

P [ω2] = 0.35

t = 4

ω3

P [ω3] = 0.25

t = 4

(a) The states of the world, common prior, and values
of t.

{ω1}

Pr [ω1] = 1.0

mode = F

{ω2, ω3}

Pr [ω2] = 0.58,Pr [ω3] = 0.42

mode = 4

(b) Player 1’s partition Π1 and posterior beliefs and
truthful report in each element of the partition.

{ω1, ω2}

Pr [ω1] = 0.53,Pr [ω2] = 0.47

mode = F

{ω3}

Pr [ω3] = 1.0

mode = 4

(c) Player 2’s partition Π2 and, for each element of
the partition, posterior beliefs and truthful report.
Also note that truthful reporting is player 2’s best
response if 1 is also reporting truthfully.

{ω1}

Pr [ω1] = 1.0

response = F

{ω2, ω3}

Pr [ω2] = 0.58,Pr [ω3] = 0.42

response = F

(d) Player 1’s partition, posterior beliefs, and best
response when player 2 is reporting truthfully. Player
2’s best response to this strategy will be to always
report F, and we will be in equilibrium.

Fig. 1. Truthful strategies and a sequence of best response strategies in an output agreement game. There
is a random variable t that can take either the value F or the value4 depending on the state of the world.
Two players, whose information is given by (b) and (c), are asked to report the most likely value of t and
are paid 1 if they agree and 0 if they disagree. To compute a best response given a signal, a player simply
determines, according to her posterior beliefs, which value – F or4 – is more likely to be reported by her
opponent. In this case, if we start with a truthful strategy from either player and iteratively compute best
response strategies, we converge to an equilibrium where both players always report F, even though4 is the
common-knowledge most likely value.

unique maximizer of Eω h(d(a, t[ω])) is a = Eω t[ω], where the expectation is taken
according to the same distribution in both cases.

We first note that a Πi-specific report of the mean puts full support on a single
response; likewise, by the above, all best responses put full support on a single re-
sponse (since each is an expected value). Therefore, when considering a sequence of
best response strategies beginning with a Πi-specific one, we need only consider such
strategies.

Now we will view a player’s strategy si as a random variable Fi where Fi[ω] is the
report given full support by si(Πi(ω)). Consider the sequence t, F (1)

i , F (2)
j , F

(3)
i , F

(4)
j , . . . ;

this is in correspondence with a sequence of best response strategies where F (1)
i is

Πi-specific and each random variable in the sequence consists of expectations of the
previous variable according to various posterior beliefs. Formally, in each state ω∗,
F

(k)
j [ω∗] =

∑
ω Pr [ω | Πj(ω

∗)]F
(k−1)
i [ω], and the same holds with i and j reversed. This

construction allows us to use the following nice result of Samet:

PROPOSITION 5.4 (PROPOSITION 2′ AND THEOREM 1′ OF SAMET [1998]). Let t be
a random variable taking values in R and consider the sequence t, F (1)

i , F
(2)
j , . . . of

iterated expected values restricted to states of a fixed element Q of the common-knowledge
partition Π. If and only if player beliefs are consistent with the existence of a common
prior, then this sequence converges on states in Q, and its value in each state ω∗ ∈ Q is
the same; moreover, this value is

∑
ω Pr [ω | Q] t[ω].

This gives that, when t ∈ R, the sequence of iterated expected values converges to
the common-knowledge expected value. To use this result, consider any fixed Q ∈ Π.
We note that the expected value of a random variable in Rn is an n-tuple whose k-th
entry is the expected value of the k-th entry of the random variable. Therefore, for each
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k = 1, . . . , n, a sequence of best responses F (1)
i , F

(2)
j , . . . involves alternately computing,

for each ω∗, the expected value of the previous strategy’s k-th entry. Therefore, by Samet,
the k-th entry of the best response converges to the expected value of the kth entry of t
according to the common knowledge posterior when ω∗ ∈ Q.

Because this holds for all entries k of t, this implies that in every state ω∗, the
player strategies converge to reporting the expected value of t according to the common
knowledge element Π(ω∗). Finally, by Theorem 5.2, we have that reporting the common-
knowledge mean actually is an equilibrium. So the inference process converges to the
equilibrium where players report the common-knowledge mean.

This result is encouraging because many natural tasks may be modeled as reporting the
mean of some random variable. These could include straightforward numerical queries
such as estimating the number of cells in a microscope image; geographical tasks such
as estimating the facility location that would minimize average commute time for a
large population; or numerical prediction tasks for long-term events (where waiting to
reward agents until ground truth becomes available may be undesirable).

However, this nice convergence result does not extend to two of the other most natural
properties: median and mode. In fact, this holds more broadly than in Rn; we consider
(non-constant) random variables taking values in an arbitrary metric space. By median
of t, we mean a value in the range of t that minimizes the expected distance to t[ω]. By
mode, we mean a value in the range of t with highest total probability.

PROPOSITION 5.5. When |Ω| ≥ 3, no output agreement mechanism for eliciting the
median or mode of a random variable in an arbitrary metric space ensures for all
settings that a sequence of best-response strategies, beginning with a Πi-specific strategy
for either player i, converges to a Π-specific equilibrium.

PROOF. We first demonstrate that a necessary condition for a sequence of best-
response strategies to converge to a Π-specific equilibrium would be that the composition
of reward function h and distance metric d be a strictly proper scoring rule6 for the
given property (median or mode). We then show that no mechanism with this property
is successful by constructing a counterexample for any nontrivial report space.

Consider the case where player 2 is completely informed: the partition Π2 consists
of singleton sets. In every state of the world, player 2 learns the exact value of t. Let
player 1 have some strictly coarser partition. Now consider a Π2-specific strategy of
player 2; player 1 has some best response s1. Then player 2’s best response will be to
exactly mimic this strategy; player 2 can set s2({ω∗}) = s1(Π1(ω∗)) for every state ω∗.
Both players receive the maximum reward in every state, so this is an equilibrium.

This equilibrium is common-knowledge-specific whenever player 1’s best response to
a Π2-specific strategy is Π1-specific (since Π1 = Π in this case). But for either median
or mode, a Π2-specific strategy is to simply report the value of the random variable in
the observed state. So player 1 faces a scoring rule h(d(s1(Π1(ω∗)), t[ω∗])) in state ω∗.
Player 1 has a strict incentive to best-respond truthfully according to Π1 if and only if h
is a strictly proper scoring rule for the appropriate property.

Thus, to elicit either the median or mode, h composed with d must be a strictly proper
scoring rule; that is, a best response must be to report the median (respectively, mode)
of an opponent’s strategy. Now construct a counterexample of a random variable whose
range consists of two distinct values. Without loss of generality, suppose there are
only three states of the world (otherwise, split them into three groups arbitrarily and

6In this context, a scoring rule S(a, a∗) takes a report a ∈ A and a realization a∗ ∈ A of a random variable
and returns a payoff; it is strictly proper for a property if, for fixed beliefs, reporting the value of the property
according to those beliefs uniquely maximizes expected score according to those beliefs.
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treat each group as a state). Then we construct the information structure in Figure
5.1, where F and 4 represent the two values in the range (and with an arbitrary, but
fixed, distance between them). In this case, the median and mode necessarily coincide,
and a best response (as argued above) must be the mode of the opponent’s strategy. As
demonstrated in Figure 5.1, the common-knowledge most likely value is 4; however,
the inference process always reaches an equilibrium in which F is always reported.

The result is quite negative: In state ω3, both players are certain that the true realization
of the random variable is4, yet both report F due to their uncertainty about the other’s
report. Furthermore, this may be generalized to an arbitrarily bad example where the
true realization is 4 1− ε of the time, and both players know that the realization is 4
almost 1− ε of the time, yet the inference process converges to always reporting F.

5.2. Mechanisms for Many Players
The primary motivation for considering mechanisms on many players, rather than
deterministically dividing into many two-player games, is to utilize the common method
of introducing a “trustworthy” agent who plays a “good” equilibrium (in this case,
Π-specific). This is only useful if done with small probability: The trusted agent can
participate in one in every thousand games, for example, with the game randomly se-
lected; this would allow a mechanism designer to elicit information about one thousand
different random variables at once with a single trusted agent.

The mechanism first collects reports, then uses some random procedure to pick a
reference report aj for each player i; i’s payoff is h(d(ai, aj)). Possible random procedures
include dividing players into pairs; ordering players into chains or cycles with each
compared against the next; and selecting for each player a reference report uniformly
at random. Each method may also choose to leave a player unmatched (as with the end
of a chain) with a certain probability and pay him a fixed amount; this may reduce the
budget required, for example. The following is straightforward:

THEOREM 5.6. For each of the above comparison procedures, for any singleton query
T , there is mechanism eliciting a common-knowledge-specific strict equilibrium (where
common knowledge is of every player in the game). Furthermore, there is a variant of
each for eliciting the mean of a random variable such that any sequence of best response
strategies, for any fixed ordering of the players, to any Πi-specific strategy converges to a
Π-specific equilibrium.

6. COMPARISON OF MECHANISMS FOR ELICITING INFORMATION
Here, we give context to our results by providing a comparison of several mechanisms
for information elicitation without verification. We describe the mechanisms at a high
level and defer further details to Appendix C. The mechanisms use a “signals” model of
private information: There are different possible events e ∈ E of interest7 and a prior
P [e] on e; nature selects an event e and each player i receives some signal ti; the joint
distribution of signals conditional on e is given by a prior P [t1, . . . , tn | e].

6.1. Peer-Prediction (PP) [Miller et al. 2005]
There are two players sharing a common prior P [e], P [t1, t2 | e] that is known to the
mechanism designer. It is assumed that signals are stochastically relevant: Pr [tj | ti]
is not the same for all values of ti. The mechanism uses its knowledge of the priors
and the reported signal of each agent to compute a posterior “prediction” for the other
agent’s signal; this is scored against the signal actually reported.

7The literature uses the terminology “states of the world”, but these are not equivalent to the states of the
world in this paper’s model. The correspondences between the two models is given in Appendix A.
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The designer learns a large amount of new and useful information: By truthfully
eliciting every signal (or element of the partition) of each agent, she learns a finely-
partitioned event space given by the intersection of the agents’ reported events. However,
the theoretical assumptions are quite strong: The mechanism designer must have full
knowledge of the common prior distribution as well as the players’ partition structures.
Furthermore, the signal structure as known by the mechanism designer and reported
by the agents must capture agents’ beliefs completely. For example, consider rating a
restaurant from one to five. Two agents who observe a restaurant’s quality as “four
stars” may have completely different posterior distributions over others’ ratings: The
rater may be particularly picky, for instance, or particularly fond of Chinese food. The
mechanism’s computed posterior must take this into account to maintain incentives;
this may make implementation in practice difficult.

Peer Prediction Without a Common Prior (PPwoCP) [Witkowski and Parkes 2012a].
In this variant, the PP setting is restricted to just two possible signals, low and high;
each agent has a private prior distribution over events e and signals, not necessarily
known to the other or to the mechanism, but satisfying that signals are generated
independently conditional on e. It is required that agents first report a prior probability
that some other agent receives a high signal, then receive their signal, update to a
posterior probability that some other agent receives a high signal, and report it. This
requirement and that of binary, conditionally independent signals limit PPwoCP’s use
cases, but it is straightforward to implement.

6.2. Bayesian Truth Serum (BTS) [Prelec 2004]
There is a “sufficiently large” or countably infinite population of agents who share a
common prior. The information structure is assumed to be impersonally informative:
Signals are generated i.i.d. conditional on e, and no two signals map to the same
posterior.8 Each agent i makes two reports: his signal ti, and his posterior probability
distribution pi predicting the empirical distribution of responses.

The mechanism designer need not know the information structure. However, there is
a small catch. In PP, the mechanism designer knows the information structure and thus
can perfectly interpret reported signals to reason about events or random variables. In
BTS, the designer does not necessarily have such information and never learns how
signals map to states of the world or other values of interest. Of course, in cases such
as surveys, the distribution of signals may be the sole desired information.

Robust Bayesian Truth Serum (RBTS) [Witkowski and Parkes 2012b]. This modi-
fication to BTS relaxes the requirement of a large population, functioning for n ≥ 3
agents, but restricts to binary signals. The common prior must satisfy the impersonally
informative condition. It elicits limited information: The operator essentially learns the
number or proportion of “high” signals in the population. However, implementation is
easy. Unlike PP, it does not require the mechanism designer to write down and compute
with a common prior; unlike PPwoCP, it does not require temporal separation of signals;
and unlike BTS, it does not require a large population of players.

6.3. Output Agreement Mechanisms (OA)
Output agreement mechanisms achieve weaker honesty results than the other methods
in that they elicit only common-knowledge-specific, rather than private-information-
specific, responses. This is the primary drawback of the method. However, it obtains
several advantages in return.

8The phrase “impersonally informative” refers to the fact that any two agents receiving the same signal will
have identical posterior beliefs, regardless of their identities.
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Table I. Characteristics of Mechanisms

PP PPwoCP BTS RBTS OA

common prior must exist yes no yes yes yes

other assumptions on
information structure

stochastic
relevance

conditional
independence

impersonally
informative

impersonally
informative

none

designer must know
information structure

yes no no no no

# of players ≥ 2 ≥ 2 ≈ ∞ ≥ 3 ≥ 2

# of signals any 2 any 2 any

type of player reports signal prior and
posterior
predictions of
signals

signal and
prediction of
signals

signal and
prediction of
signals

arbitrary

designer learns? everything distribution of
signals

distribution
of signals

distribution
of signals

common
knowledge

Properties of various mechanisms for eliciting information without access to ground truth: peer prediction, PP
without a common prior, Bayesian truth serum, robust BTS, and output agreement.

First, OA allows for very relaxed assumptions on the knowledge of the mechanism
designer. It is the only method which makes no assumptions either on designer’s
knowledge of the information structure or the information structure itself.

Second, OA does not make restrictions on agents’ information structures beyond
consistency with existence of a common prior. All other methods except PP impose
strict restrictions on the signal structure; meanwhile, PP imposes a communication
complexity restriction: As mentioned, signals in PP must capture the entirety of agent
beliefs, so we are forced to limit the complexity of agent beliefs in the model to the
number of bits we are able to communicate in a reasonable amount of time. Thus, for
example, producing a restaurant rating may actually be a task better-suited to OA,
where it might be interpreted as “expected quality of experience” and reports may be a
single number, than to PP, where for incentive compatibility it must be interpreted as
“report all relevant information about your experience there”.

Third, OA allows for an arbitrary report space and allows the designer to specify a
query of interest directly rather than eliciting signals and distributions over signals.
This is achieved by Lambert and Shoham [2008]; Goel et al. [2009], but only for special
cases of conditionally independent random processes in R.

Of course, OA is limited to cases in which common knowledge is the desideratum.
However, such cases may be quite common in e.g. markets for crowdsourcing, where
private information may be difficult to distinguish from noise and common-knowledge
consensus serves as validation. It is also of note that common knowledge is a property
of the particular group playing the game; selecting a group of experts to play an output
agreement game could result in high-quality responses if the answers are common
knowledge among experts in that field.

7. CONCLUSIONS
A broad theme and common goal of mechanism design is the elicitation of accurate
information. Much recent work focuses on understanding what types of information
can be elicited, how, and under what circumstances. In particular, human computation
has motivated the proposal of a large number of mechanisms for eliciting information
when ground truth is unverifiable.
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Formalizing this setting as a sub-field of mechanism design yields new insights and
broad impossibility results on the capabilities of mechanisms in this space. First, such
mechanisms (almost) always have uninformative equilibria. Second, a mechanism can-
not incentivize agents to report truthfully according to private information unless it
either assumes that the mechanism designer has some knowledge of the players’ infor-
mation structures or else restricts the class of information structures. The applications
of these results are most immediate in the area of human computation; additionally,
the implications may extend to other mechanism design settings such as differential
privacy, where one wishes to solicit computations on a privately held dataset but may
not be able to verify reported outputs.

These results highlight a discrepancy between theory and practice: Theoretical ap-
proaches tend to be complex and make restrictive assumptions, yet simple, useful
mechanisms are observed in practice. Resolution of this paradox requires a new ap-
proach to truthfulness in mechanism design. By generalizing truthfulness to the cri-
terion of specificity of reports, we are able to show that the output agreement class of
mechanisms, an extremely broad class that assumes neither designer knowledge nor
restricted information structures, successfully elicits common knowledge. This result
may be particularly positive in common human computation settings, where such an
answer is exactly what is desired by the mechanism designer.
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A. EQUIVALENCE OF “STATES OF THE WORLD” AND “SIGNALS” MODELS
For completeness, we show that two alternative models of information structure are
equivalent by showing that each can model the other. The result is straightforward, but
the correspondences are perhaps not immediately intuitive or trivial.

We assume a finite number of n agents.
The states of the world model is as follows. There is a finite set of states Ω and a

common prior P [ω] on them. Each agent i has a partition Πi of Ω; when the true state
of the world is ω∗, agent i learns that it is in the set of states Πi(ω

∗), the element of his
partition containing ω∗. His posterior distribution is given by the prior restricted to this
subset, Pr [ω | Πi(ω

∗)], which is equal to Pr [{ω} ∩Πi(ω
∗)] /Pr [Πi(ω

∗)].
The signals model is as follows. There is a set E of possible events of interest9

and a common prior P [e]. Each agent i has a set Ti of possible signals. When the
true state of the world is e∗, the n agents receive the respective signals (t1, . . . , tn) ∈
T1×· · ·×Tn with probability given by Pr [t1, . . . , tn | e]. Each agent i updates to a posterior
distribution on the state and others’ signals according to the following computation
derived from Bayes’ rule: Pr [e, {tj 6=i} | ti] = Pr [ti, {tj 6=i} | e] Pr [e] /Pr [ti], with Pr [ti]
given by

∑
e,{tj 6=i} Pr [ti, {tj 6=i} | e]P [e].

PROPOSITION A.1. The models are equivalent.

PROOF. (⊆) Let a “states” model (Ω,P [ω] , {Πi}) be given. Let E = Ω, P [e] = P [ω],
and Ti = Πi with each signal corresponding to an element of the partition. It follows that
Pr [t1, . . . , tn | e] = 1 if the state e is in the intersection of the sets ti and 0 otherwise. We
must show that, when agent i receives signal ti, his posterior is given by Pr [e, {tj 6=i} | ti].
Our mapping gives us immediately that he has a posterior Pr [e | ti] on states e; the rest
follows because the state e completely determines the signals t1, . . . , tn.

(⊇) Let a “signals” model (E,P [e] , {Ti},Pr [t1, . . . , tn | e]) be given. We let Ω = E×T1×
· · ·×Tn. When ω = (e, t1, . . . , tn), we let P [ω] = Pr [t1, . . . , tn | e]P [e]. We let each element
of player i’s partition correspond to a signal ti ∈ Ti, so that when ω∗ = (e∗, t1, . . . , tn),
Πi(ω

∗) = {(e, t̂1, . . . , t̂n) : t̂i = ti}. It only remains to show that an agent’s posterior in
state ω∗ is given by Pr [ω | Πi(ω

∗)]. We are given that the agent computes a posterior
Pr [e, {tj 6=i} | ti]; but since e, {tj 6=i}, and ti determine ω, and ti = Πi(ω

∗), we are done.

B. CONVERGENCE OF PLAYER INFERENCE IN OUTPUT AGREEMENT
Here, we show that that any sequence of best responses in an output agreement game
converge to a ε-equilibrium for every ε. A strategy profile (s1, . . . , sn) is an ε-equilibrium
if, for each player i, the expected utility from playing any strategy s′i is no more than ε
greater than the expected utility for playing si when i’s opponents play s−i.

9In the literature, E is commonly referred to as the “states of the world”; however, they are not equivalent to
the states of the world ω ∈ Ω and so we use the term “event” to avoid confusion.
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PROPOSITION B.1. Every sequence of best response strategies in an output agreement
game converges to a ε-equilibrium for every ε.

PROOF. Let a two-player output agreement game G = (M, I) be given. We use
an argument in the style of potential games [Rosenthal 1973; Monderer and Shapley
1996]. Fixing Π1,Π2,P [ω], let F (s1, s2) =

∑
ω P [ω]h(d(s1(Π1(ω)), s2(Π2(ω)))); this is the

expected utility of both players when playing strategies s1 and s2. Then F is bounded
above by the maximal value of h (i.e. h(t, t) for a constant t), and F (s′1, s2) ≥ F (s1, s2)
if s′1 is a best response to s2, for all s1, s2, s

′
1 (and analogously for s′2). Therefore any

sequence of best response strategies may be put in correspondence with a monotonically
increasing sequence of values for F ; since F is bounded above, this sequence converges
to some value c.

Thus, for any ε, the values of F eventually converge to a value of F (s1, s2) > c − ε;
at this point, the improvement each player makes from a best response strategy is
bounded by c− F (s1, s2) < ε.

C. MECHANISMS FOR INFORMATION ELICITATION
Here, we overview various mechanisms for information elicitation without verification
in further detail, giving the methods of scoring and intuition behind the proofs of
incentive compatibility.

C.1. Peer-Prediction (PP) [Miller et al. 2005]
There are two players. Nature selects the state of the world from a common prior P [e],
and each player i receives a signal ti and reports it. The joint set of signals is drawn
from a common prior P [t1, . . . , tn | e]. Both priors are known to all players and the
mechanism designer. It is assumed that signals are stochastically relevant: Pr [tj | ti] is
not the same for all values of ti.

Each player i reports his observed signal ti. The mechanism designer, using her
knowledge of the common priors and the reported signal of player 1, computes player
1’s posterior distribution Pr [t2 | t1] over player 2’s signal (and vice versa). The designer
then uses a strictly proper scoring rule10 to score this posterior against the signal
actually reported by player 2 (and vice versa). The intuition behind truthfulness is
straightforward: Since the mechanism designer knows the information structure, the
posterior she computes for player 1 is correct whenever player 1 reports truthfully; and
because of the strictly proper scoring rule, player 1 in general does strictly best when the
posterior computed matches 1’s beliefs. We may view this as a revelation-principle-type
approach, but with a two-for-one: The mechanism learns both the agent’s signal and
posterior from a single report; both pieces of information are necessary to run the
mechanism. (Along these lines, asking agents to report posteriors instead of signals will
only work in cases where the signal can be uniquely inferred.)

C.2. Peer Prediction Without a Common Prior (PPwoCP) [Witkowski and Parkes 2012a]
Here, the PP setting is restricted to just two possible signals, low (0) and high (1). Each
player has a private prior distribution over states of the world and signals conditional
on the state; beliefs need not be consistent with the existence of a common prior.
Beliefs for each player i are assumed to be admissible: |E| ≥ 2; P [e] > 0(∀e ∈ E);
Pr [ti = 1 | e] 6= Pr [ti = 1 | e′] if e 6= e′; 0 < Pr [ti = 1 | e] < 1(∀e). Admissibility is a
relatively weak requirement, particularly in the two-signal setting. It is also assumed

10A strictly proper scoring rule S(p, t) taking a probability distribution p and outcome t satisfies that the
unique maximizer of Et∼p S(p̂, t) is p̂ = p.
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that players believe signals to be generated independently conditional on the state of
the world; that is, player i believes that Pr [t1 = 1 | e] = Pr [t2 = 1 | e].

Each player first reports a prior belief that the other player will receive a high signal,
then receives his signal, updating to and reporting a posterior belief that some other
player received a high signal. The mechanism infers his signal from the change in
the posterior: If the believed probability of a high signal increases, it is assumed that
he received a high signal. The mechanism then scores both of his reports (the prior
and posterior) against the other player’s inferred signal using a strictly proper scoring
rule. The mechanism is truthful because in both scenarios – before and after receiving
his signal – a player wishes to report his current beliefs truthfully (due to the use
of a strictly proper scoring rule). Further, because he believes signals are generated
independently conditional on e, whenever he receives a high signal, he believes it more
likely that his opponent will receive a high signal, so his posterior probability increases
and the mechanism does indeed infer his signal correctly.

C.3. Bayesian Truth Serum (BTS) [Prelec 2004]
There is a “sufficiently large” or countably infinite population of players. Agents share
a common prior P [e] on states of the world e ∈ E. There is a set of m signals. The
information structure is assumed to be impersonally informative: For a given signal
t, every player who receives t has an identical posterior distribution Pr [e | t]. (This is
equivalent to conditionally independent signals: P [ti | e] = P [tj | e].) It is also assumed
that no two signals map to the same posterior. The mechanism designer is not assumed
to have any knowledge over the information structure. Each player i makes two reports:
his signal ti, and his posterior probability distribution pi predicting the empirical
distribution of responses.

To score players, first compute for each signal t the empirical frequency t̄ and the
geometric average prediction p̄(t). All players reporting the signal t then receive an “in-
formation” score log(t̄/p̄(t)). This score rewards signals which are “surprisingly common”
– i.e., reported by a relatively high fraction of respondents but collectively predicted to be
rare. The intuition behind truthfulness is that an player receiving signal t should expect
that, on average, the rest of the population will underestimate the how many people
observe t. Each player then receives a “prediction” score given by the relative entropy
(KL-divergence) between the empirical signal frequencies t̄ and the player’s prediction
pi. We may view this as simply applying the logarithmic scoring rule, a strictly proper
scoring rule, for prediction pi over each of the signals reported by the other players;
truthfulness follows immediately.

C.4. Robust Bayesian Truth Serum (RBTS) [Witkowski and Parkes 2012b]
This modification to BTS relaxes the requirement of a large population, but restricts
to binary signals. There are n ≥ 3 players sharing a common prior P [e] on the states
of the world E. There are two possible signals, 1 (high) and 0 (low), and the players
share an admissible (see PPwoCP) common prior P [t | e] of the probability of any player
receiving a signal given a state. This implies the impersonally informative condition.

Each player reports a signal ti and a predicted probability pi that some other player
receives the high signal 1. The player’s prediction is scored using a proper scoring rule
on his prediction pi against the reported signal tk of some other player k.

His information score is computed using the shadowing method. The idea is to assign
i a prediction, then use a proper scoring rule on that prediction. To assign i a prediction,
take the prediction report pj of some other player j and “shadow” it in the direction of
i’s report: take pj + δ if i received a high signal, or pj − δ if i received a low signal (where
δ > 0 is any reasonably small constant). We then score the resulting number against
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the report of (say) player k using the quadratic scoring rule: −(tk − p)2 for prediction p.
This gives the rest of i’s payoff.

As intuition for truthfulness, assume that j reports honestly; then pj is the result of a
Bayesian update based on j’s signal. Now suppose j were to learn i’s signal; then j would
do a second Bayesian update to some posterior p∗j . This would be the “ideal” prediction
report given both player’s information; so i would like her assigned “prediction” to be
as close as possible to this value. (This is always true in particular because we use
the quadratic scoring rule.) But if i’s signal is high, then p∗j > pj , and if it is low, then
p∗j < pj (this follows from the conditional independence of signals). So when i has a high
signal, she would rather pj be shadowed up than down, and vice versa.

C.5. Collective Revelation [Goel et al. 2009]
As with the previous problem, there is a random process generating values i.i.d. from
an unknown distribution. Here, however, each agent may observe multiple generated
values (signals). It is assumed that the distribution has a particular form; the paper
provides a mechanism for the Bernoulli distribution and notes that the normal, Poisson,
and exponential distributions also have associated mechanisms. It is assumed that there
is a common prior on the distribution of the parameter of the underlying distribution.
The mechanism asks players to make two reports: Their expected value of the random
variable, and a hypothetical expected value of the random variable supposing they were
to observe a certain number of successes in a certain number of additional trials. The
mechanism then exploits a bijection between these pairs of reports and posterior beliefs
to infer each player’s true beliefs. It is able to use these beliefs to generate a prediction
for other reports, as in peer-prediction.

C.6. Truthful Surveys [Lambert and Shoham 2008]
In this work, a mechanism designer is interested in a random process that is generating
values i.i.d. according to some unknown distribution. A large population of players each
observes a value generated by this distribution. Players may have arbitrary beliefs over
the distribution from which values generated as long as they believe them to be i.i.d.

First, consider a scenario where each player draws from a different, but publicly
known distribution. In this case, the mechanism designer can use the cumulative
distribution function of each player’s distribution to convert reports into a uniform
random value in [0, 1]. So now, without loss of generality, suppose players each report a
value drawn from the interval [0, 1]. The authors provide a reward rule such that player
rewards are zero-sum, and the unique equilibrium is for each player to draw randomly
from this interval. The reward rule enforces that, when being scored against player
j, player i would prefer to either have a converted report that is 0.5 to 1 greater than
j’s converted report, or else 0 to 0.5 less than j’s converted report.11 Thus, it is quite
intuitive that both players drawing uniformly from [0, 1] is the unique equilibrium: If
any player puts more weight on a particular part of the interval, the other would like to
shift to a report that tends to undercut it, or (if it is low enough) to a report that tends
to be much higher than it. This will give positive expected utility, so the first player
will have negative expected utility. But by the same argument, now the other player is
playing a shifted strategy and so the first player has some shifted best response; and
so on. Thus, the only equilibrium will be for both to draw uniformly at random. This
intuition extends to when players are scored against all other players.

11The authors explain the intuition with a lazy hiker analogy in which the direction of the ranges are reversed,
but this does not affect incentives.
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Now consider the case where the designer does not know the players’ private beliefs.
However, when all players report random values, she can use these values to compute
an unbiased statistical estimator of the empirical cumulative distribution function; she
then uses the mechanism above, with the same distribution function for every player, to
score reports. Reporting truthfully is an equilibrium: Even when players have different
beliefs over the signal generation process, each believes that the empirical distribution
will match her own beliefs, so each believes that she will be scored according to the
mechanism described in the full-information case.

However, it is not a strict equilibrium to report one’s signal truthfully: When all
other players are drawing reports randomly, any fixed report is a best response. Weak
incentives may be justified with a qualitative argument: The only equilibria of the game
are when all players are drawing values from the same random process, so although
individual deviations are possible, selection of a different equilibrium would require all
players drawing from some other focal random process.
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