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Abstract

The recent advent of human computation – employing non-
experts to solve problems – has inspired theoretical work in
mechanism design for eliciting information when responses
cannot be verified. We study a popular practical method, output
agreement, from a theoretical perspective. In output agreement,
two agents are given the same inputs and asked to produce
some output; they are scored based on how closely their re-
sponses agree.
Although simple, output agreement raises new conceptual
questions. Primary is the fundamental importance of common
knowledge: We show that, rather than being truthful, output
agreement mechanisms elicit common knowledge from par-
ticipants. We show that common knowledge is essentially the
best that can be hoped for in any mechanism without verifica-
tion unless there are restrictions on the information structure.
This involves generalizing truthfulness to include responding
to a query rather than simply reporting a private signal, along
with a notion of common-knowledge equilibria. A final impor-
tant issue raised by output agreement is focal equilibria and
player computation of equilibria. We show that, for eliciting
the mean of a random variable, a natural player inference pro-
cess converges to the common-knowledge equilibrium; but
this convergence may not occur for other types of queries.
Portions of this work were presented at the 2013 Workshop on
Social Computing and User-Generated Content, at the 14th
ACM Conference on Electronic Commerce.

Introduction
The emerging field of human computation has harnessed the
intelligence of an unprecedentedly large population of people
for the purpose of solving computational tasks. For example,
in the now-classic ESP game (von Ahn and Dabbish 2004),
which has collected semantic labels for over one hundred
million images1, the image labeling task is turned into a fun,
online game: Two players are simultaneously shown an image
and asked to independently type words related to the image;
whenever a word is typed by both players, they score some
points and move on to the next image.

The ESP game is an example of an output agreement mech-
anism, a term coined by von Ahn and Dabbish (2008) to
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describe a fundamental aspect of the game — rewarding
agreement. While the ESP game has obtained an incredi-
ble amount of useful labels for images, it is interesting to
ask what knowledge is elicited in such games with strategic
players. Intuitively, a player will not always give the most
descriptive label of an image in the ESP game if he thinks
that that label may be too specialized to be known by the
other player. For example, instead of “Woodcock”, he may
type “bird” for a picture of a Woodcock. Hence, we cannot
expect to obtain all private knowledge of players in general.
Then, exactly what knowledge can be reliably obtained?

This question motivates our effort in this paper. We for-
mally define and analyze the broad class of output agree-
ment mechanisms. In an output agreement mechanism, two
players are presented with the same query and each gives a
response, there is a metric measuring the distance (or degree
of agreement) between the two responses, and the reward of
the players monotonically decreases with the distance. For
example, an output agreement mechanism can ask players
to report some statistic of a random variable (e.g. the mean
or median of customer ratings for a restaurant) and reward
them according to the absolute difference of their reports.
In this paper, we study what knowledge can be elicited at
game-theoretic equilibria in output agreement mechanisms.

The output agreement mechanisms fall into the general
setting that we refer to as information elicitation without veri-
fication (IEWV) because the designer would like to elicit use-
ful information from the participants, but does not necessarily
have the resources to verify the quality of responses. Many
mechanisms have been developed for this setting, including
the peer prediction method (Miller, Resnick, and Zeckhauser
2005) and Bayesian truth serum (Prelec 2004). However, the
same model used for understanding prior mechanisms does
not provide additional insights for output agreement beyond
that it does not elicit all private knowledge. A theoretical
analysis of output agreement requires novel approaches and
insights that we believe are also relevant to understanding the
broader IEWV setting as well.

In this paper, we first focus on the solution concept. Typi-
cally, mechanisms for IEWV ask agents to report their “sig-
nals”, that is, the information they observe, and aim to truth-
fully elicit such signals under some assumptions on the struc-
ture of players’ information or the mechanism’s knowledge
about it. But for output agreement, eliciting “signals” may



be unnecessary or infeasible. We model output agreement
as asking agents a “query” and introduce a notion of player
specificity to capture the amount or “coarseness” of knowl-
edge that the player uses to answer the query. For example,
“Woodcock” is a very specific response (it might be exactly
the player’s signal), while “small bird” is more coarse (though
perhaps still useful), and “creature” is very coarse. Techni-
cally, the most refined knowledge that the player can use
is his private signal (i.e. being truthful) while the coarsest
knowledge is the prior information.

With this, we show that output agreement games elicit com-
mon knowledge: There is a strict equilibrium where players
report the correct answer according to the common knowl-
edge they possess; and this holds for any query we ask and
any information structure agents have. We note that most
prior mechanisms focus on only eliciting signals rather than
arbitrary queries and often require assumptions on the infor-
mation structure. Moreover, output agreement’s solution of
common knowledge cannot be much improved: No mecha-
nism for IEWV can obtain answers that are based on strictly
more refined knowledge (in particular, players’ private in-
formation), without making restrictions on the structure of
players’ information. Another drawback of output agreement
is the existence of “bad” equilibria where no information is
revealed; we formalize this with uninformative equilibria and
show that it is (virtually) impossible for a mechanism for
IEWV to avoid this problem.

We second focus briefly on some of the implications of
the common-knowledge solution concept on focal equilibria
in output agreement. In prior mechanisms for IEWV, which
focused on truthful equilibria, it might naturally be argued
that such equilibria are focal: Agents are presented with a
query and they respond truthfully. In output agreement, how-
ever, truthful responses are not always an equilibrium. If
“Amanda” and “Ben” are playing an output agreement game,
then Amanda may observe the query and think of a truthful
response, but she must also reason about Ben’s possible truth-
ful responses and her own best response to these. But Ben
should be following the same reasoning and should therefore
best-respond to Amanda’s best response; and so on.

Ideally, this player inference process would converge, by
iterated computation of hypothetical best responses, to the
common-knowledge equilibrium. We show that for reporting
the mean of a random variable in Rn, the inference process
indeed converges to the common-knowledge equilibrium.
But this is not the case for querying the median or mode of a
random variable. Even if both players know that an outcome
for a binary variable will happen almost certainly, hence this
outcome is the median and mode, the inference process may
converges to an equilibrium where both players always report
the other outcome.

For brevity, in most cases cases our proofs will be omitted;
they are available in the full version posted on the authors’
webpages.

Related Work
Prior work in information elicitation without verification in-
cludes notably the peer prediction method (Miller, Resnick,
and Zeckhauser 2005), its improved variants (Jurca and Falt-

ings 2006; 2007a; 2009; 2007b) and Bayesian truth serum (Pr-
elec 2004); these are most closely related to output agree-
ment along with their extensions, peer prediction without
a common prior (Witkowski and Parkes 2012b) and the ro-
bust Bayesian truth serum (Witkowski and Parkes 2012a;
Radanovic and Faltings 2013). Other approaches focus on
observations drawn i.i.d. from an unknown distribution in
R (Lambert and Shoham 2008; Goel, Reeves, and Pennock
2009). Dasgupta and Ghosh (2013) design a mechanism to
elicit binary evaluations when there are multiple simultane-
ous queries for each agent and agents can exert more effort
to improve accuracy relative to an unknown ground truth.

The term “output agreement” was introduced by von Ahn
and Dabbish (2008), with a primary example being the ESP
Game (von Ahn and Dabbish 2004). Such games have been
investigated experimentally (Weber, Robertson, and Vojnovic
2008; Huang and Fu 2012). But to our knowledge, there has
been no theoretical analysis of the general output agreement
setting. Witkowski et al. (2013) consider a very simple output
agreement setting, but suppose there is an underlying (binary)
truth to be discovered and that agents can invest additional
effort to gain additional information about the truth. Jain
and Parkes (2008) give a game-theoretic model and analysis
of the ESP Game, but their model makes many ESP game-
specific assumptions and restrictions. In contrast, the output
agreement class defined here covers a far broader setting
than image labeling and we do not make any assumptions or
restrictions on player strategies.

Setting
Here, we formally define mechanisms for information elicita-
tion without verification (IEWV). In the IEWV setting, there
is a set of players, each holding some private information.
A mechanism designer queries each player separately and
simultaneously (i.e., without communication between play-
ers). The designer selects an outcome of the mechanism and
assigns monetary payments to each agent. Thus the mecha-
nism, when applied to particular players, induces a Bayesian
simultaneous-move game.

Player Information
To model incomplete information, we adopt the general states
of the world model, which has been widely used in economics
for modeling private information (Aumann 1976; McKelvey
and Page 1986; Nielsen et al. 1990; Ostrovsky 2012). There
is a finite set of possible states of the world Ω, shared by all
players. An event is a subset of Ω; for example, the event
Q ⊆ Ω could be “it is raining outside” and would consist of
every state of the world in which it is raining. Nature selects a
true state of the world ω∗ ∈ Ω; an event Q is said to occur if
ω∗ ∈ Q. Thus, the true state of the world implicitly specifies
all events that occur or do not: whether it is raining, whether
Alice speaks French, whether P = NP, and so on.

A player’s knowledge is specified by a prior distribu-
tion P [ω] on Ω along with a partition Πi of Ω. A parti-
tion of a set Ω is a set of nonempty subsets of Ω such
that every element of Ω is contained in exactly one sub-
set. When the true state of the world is ω∗, each player i



learns the element of their partition that contains ω∗, de-
noted Πi(ω

∗). Informally, i knows that the true state of the
world ω∗ lies somewhere in the set Πi(ω

∗), but is unsure
where; more precisely, i updates to a posterior distribution
Pr [ω | Πi(ω

∗)] = Pr [{ω} ∩Πi(ω
∗)] /Pr [Πi(ω

∗)]. In line
with literature on information elicitation, Πi(ω

∗) will be re-
ferred to as i’s signal. (In mechanism design terms, it is
player i’s type.)

Throughout, we let the the set of states Ω and the number
of players n ≥ 2 be fixed.

A particular set of n players is therefore modeled by an
information structure I = (P [ω] ,Π1, . . . ,Πn), where each
Πi is a partition for player i and all players share the prior
P [ω]. I is common knowledge; this is the standard Bayesian
game setting. We use I to denote the set of valid information
structures on Ω with n players.

Common knowledge. Using partitions of the state space
to model private information allows an intuitive formal defini-
tion of common knowledge.2 Given partitions {Π1, . . . ,Πn},
the common-knowledge partition Π is defined to be the meet
of these partitions. The meet of a set of partitions of Ω is
the finest partition of Ω that is coarser than each individual
partition. Partition Ψ is coarser than partition Γ (or is a coars-
ening of Γ) if each element of Ψ is partitioned by a subset of
Γ. In this case, Γ is finer than Ψ (or is a refinement of Ψ).

Intuitively, an event (set of states) is common knowledge
if, when the event occurs, all players always know that the
event occurred; all players know that all players know this;
and so on. The common-knowledge partition consists of the
minimal (most specific) common-knowledge events.

To illustrate the difference between prior beliefs, common
knowledge, and a player’s posterior or private information,
consider the example of labeling images. We may formalize
the set of states of the world as a a list of binary attributes
describing the image in full detail: “(is a dog, is not brown,
is not candy, has grass in background, is running, is not a
dachshund, . . . )”. In this case, a player’s partition indicates
which attributes she can distinguish; for instance, “is a dog”
or not, “is a dachshund” or not, etc.

In this case, the prior is a distribution on all possible lists
of attributes that an image might have. Then, once the player
sees an image, she updates to a posterior. She will know
several attributes for certain due to her partition; and for
those that she is unsure of, she will have a posterior on them
according to a Bayesian update.

The common knowledge between players in this case is
the set of attributes that both players always observe. For
instance, if both players can distinguish dogs from non-dogs,
then whether the image is a dog will be common knowledge.
But if one player cannot distinguish dachshunds from non-
dachshunds, then whether the image is a dachshund will not

2Another common approach to modeling private information is
the “signals” model in which nature selects some hidden event and
there is a common prior over the joint distribution of players’ signals
conditional on the event. This model is used in peer prediction, for
example. The two models are equivalent in that each can model any
scenario described by the other.

be common knowledge.

Mechanisms, Games, and Equilibria
A mechanism for IEWV consists of, for each player i, a report
space Ai and a reward function hi : I×A1×· · ·×An → R
that takes the player reports and returns the reward for player
i (and may depend on the information structure).

When a particular group of players participate in a mech-
anism M , we have a Bayesian simultaneous-move game,
defined as G = (M, I). Nature selects a state of the world
ω∗, each player i observes Πi(ω

∗) and updates to a posterior
according to the prior, each i makes a report ai ∈ Ai, and
each is paid according to hi.

A strategy for player i is a function si that specifies, for
each element Πi(ω) of i’s partition, a probability distribution
on Ai. In state ω∗, i learns element Πi(ω

∗) of his partition
and draws an action ai ∼ si(Πi(ω

∗)). A strategy profile
(s1, . . . , sn) is a Bayes-Nash Equilibrium (or just equilib-
rium) of the game G if every player’s strategy si is a best
response to s−i (the profile with si omitted): For every state
of the world ω∗, the probability distribution si(Πi(ω

∗)) on
Ai is an optimal solution to

max
s′i(Πi(ω∗))

∑
ω∈Πi(ω∗)

Pr [ω | Πi(ω
∗)]Eω(s′i),

with

Eω(s′i) = E
[
hMi (I, s1(Π1(ω)), . . . , s′i(Πi(ω

∗)),

. . . , sn(Πn(ω)))
]
,

where the expectation is taken over the actions aj drawn from
each sj(Πj(ω)), j 6= i, and ai drawn from s′i(Πi(ω

∗)). The
strategy profile (s1, . . . , sn) is a strict equilibrium if every si
is the unique best response to s−i.

It is most common in the literature for IEWV to construct
mechanisms where the “good” (usually meaning “truthful”)
equilibrium is strict. We also wish to design focus on strict
equilibria for both theoretical and pragmatic reasons.

First, in human computation mechanisms, computing and
reporting a truthful response may not be the easiest or most
natural strategy. For instance, on a multiple choice question-
naire, simply selecting (a) for every answer may be easier
than picking a truthful response, if rewards are equal. So it
is not clear that agents will prefer truthful reporting. Second,
such mechanisms are often operated in noisy environments
such as Mechanical Turk; strict incentives may encourage
more accurate and less noisy responses. Finally, if one does
not desire strict incentives, there is a natural mechanism: Ask
players to report truthfully and pay them a constant amount.
So, usually, the case where strict incentives are desired is
more interesting from a theoretical perspective.

Queries and Specificity
We introduce the notion of a query associated with a mech-
anism. For motivation, consider the example of eliciting a
prediction for the total snowfall in a city during the following
year. A player’s signal could be very complex and include
observations of many meterological phenomena. Yet, the de-
signer does not wish to elicit all of this weather data, only to



know a single number (predicted meters of snowfall). Thus,
the designer would like to ask players to map their knowl-
edge into a report of a single number. This mapping — from
weather knowledge to predicted snowfall — is the “query” of
the mechanism.

Formally, a query T = (T1, . . . , Tn) specifies, for each
player i, a function Ti : ∆Ω → Ai mapping a posterior
distribution to the “correct”’ report when the player has that
posterior belief.3

For example, the query could be to report the posterior
distribution itself, or the expected value of some random vari-
able, or the set of states on which the posterior has positive
probability (that is, i’s signal).

In mechanism design, we usually focus on direct-
revelation mechanisms where players are simply asked to
report their signal. However, in IEWV, it is of interest to
consider other queries as well. One reason for this is that we
are interested in descriptively modeling non-direct-revelation
mechanisms, like output agreement, that exist in the literature
or in practice. A second reason to consider general queries
is because this makes our impossibility results stronger —
they apply to mechanisms attempting to elicit any type of
information.

Specificity. Here, we generalize truthfulness to specificity
of player reports, capturing the following question: What
knowledge does a player use in reporting an answer to a
query? To our knowledge, this work is the first to consider
such an extension to the traditional notion of truthfulness.

Given a query T and a partition Π̂, define the notation TΠ̂
to be the strategy that, for each ω∗ chosen by nature, makes
the report T (Pr[ω | Π̂(ω∗)]). In other words, TΠ̂ reports
correctly according to the posterior distribution induced by
Π̂. Notice that a player i can only play strategy TΠ̂ if Π̂ is
a coarsening of his partition Πi: Otherwise, he will not in
general know which element of Π̂ contains ω∗.

Definition 1. A player i’s strategy si is called Π̂-specific if:

1. Π̂ is a coarsening of i’s partition Πi, and
2. si = TΠ̂.

To gain intuition, we note three natural special cases. The
case si = TΠi

, or Πi-specificity, is just truthfulness: always
reporting according to i’s posterior. On the other extreme,
the case si = T{Ω}, or {Ω}-specific, means always reporting
according to the prior no matter what signal is received. In
the middle, we identify the case si = TΠ, or Π-specific, or
common-knowledge specific: reporting according to common
knowledge.

Any strategy that is Π̂-specific, for some coarsening Π̂
of their partition Πi, has two nice properties that one might

3One could generalize in two ways: First, by allowing multiple
possible correct answers for a given posterior, so that Ti maps
to a set of responses; and second, by allowing queries to specify
randomized reports, where the player is asked to draw from some
distribution. Output agreement can be generalized to include such
cases, although the notion of strict equilibrium requires tweaking;
and similarly, our negative results extend to these cases as well even
for “tweaked” equilibrium concepts.

associate with “weak” truthfulness. We illustrate with a run-
ning example: Suppose a player observes today’s date, and
consider coarsenings Π̂1 = the twelve months of the year
and Π̂2 = the four seasons. First, specificity requires that a
player report according to an event that actually occurs. For
example, given that it is August 2nd, a player may report “it
is August” as with Π̂1, or “it is summer” as with Π̂2, but there
is no partition where he may report that it is January or that
it is spring. Second, reports must be consistent across each
element of Π̂. For example, if a player reports “it is summer”
when it is August 2nd, then the player must make this exact
same report on every other day of summer. He cannot report
“it is summer” on August 2nd but report “it is August” on
August 3rd.

Meanwhile, Π̂ specifies the granularity of the informa-
tion. For example, we could have month-specific or season-
specific information. We thus get a partial ordering or hierar-
chy of specificity, with truthfulness as the best and reporting
the prior as the worst, where Π̂1-specific is better than Π̂2-
specific if Π̂1 is a finer partition than Π̂2.

We can now utilize specificity in defining our equi-
librium solution concept: An equilibrium (s1, . . . , sn) is
(Π̂1, . . . , Π̂n)-specific if each player i plays a Π̂i-specific
strategy in it; as important special cases, we identify truthful
and common-knowledge-specific equilibria.

Equilibrium Results
Here, we provide a formal definition and game-theoretic anal-
ysis of the two-player output agreement class of mechanisms.
We show that the mechanisms elicit common-knowledge-
specific reports with strict incentives. We then show that this
is the best that can be hoped for by any mechanism making
as few assumptions on the information structure as output
agreement; we also show that the existence of uninformative
equilibria is unavoidable.

Definition 2. A two-player output agreement mechanism M
is a mechanism for eliciting information without verification
defined as follows. The mechanism designer announces a
report space A = A1 = A2 and an associated query T
where T1 = T2 (we will abuse notation by just writing T
rather than Ti). The designer selects a distance metric d on
the space A and a monotonically decreasing reward function
h : R≥0 → R. Each player i makes a report ai ∈ A and is
paid hMi (a1, a2) = h(d(a1, a2)).

A distance metric d : A×A→ R satisfies that d(x, y) ≥ 0
with equality if and only if x = y, that d(x, y) = d(y, x) for
all x, y ∈ A, and that d(x, y) ≤ d(x, z) + d(y, z) for all
x, y, z ∈ A.

For an example mechanism in this category, consider an
audio transcription task: Two players each listen to a thirty-
second clip of speech and are asked to produce the written
transcription. The distance function on their outputs (tran-
scripts) is Levenshtein (edit) distance. The reward function
can be a fixed constant minus the edit distance between their
transcripts.



Theorem 1. For any query T , any output agreement mecha-
nism with a strictly decreasing reward function elicits a strict
equilibrium that is common-knowledge-specific for T .

Proof. For each player i, let si be a Π-specific strategy with
respect to T ; that is, si(Πi(ω

∗)) = T (Pr [ω | Π(ω∗)]).
Since Π is the common knowledge partition, we have that

in every state ω∗, s1(Π1(ω∗)) = s2(Π2(ω∗)). In any state,
both players’ strategies put full support on the same report;
thus, each player does strictly worse by drawing from any
other distribution. Thus (s1, s2) is a strict equilibrium.

How positive is Theorem 1, and can it be improved upon? It
is quite positive along the “query” axis: It works for any given
query. Prior mechanisms for IEWV tend to focus primarily
on eliciting signals. However, along the “specificity” axis, we
might naively hope for better; for instance, we might want a
truthful mechanism. But, notice that output agreement makes
no assumptions on the information structure I of the players.
In the next section, we show that no mechanism can strictly
improve on common-knowledge specificity unless it makes
some such assumption. This shows that output agreement is
actually optimal along the specificity axis among the class of
mechanisms that make no assumptions on I.

Impossibility Results
In this section, we give two broad impossibility results for
IEWV. First, as just discussed, we show that no mechanism
can guarantee an equilibrium more specific than common
knowledge unless it makes some assumption on the informa-
tion structures.

Second, we address a different concern about output agree-
ment mechanisms, that they have “bad” equilibria: Players
can agree beforehand to all make the same report, ignoring
their signals. Our second impossibility result says that the
same is true of all mechanisms for IEWV.

Theorem 2. Let T be any query and M any mechanism for
IEWV. Then M cannot guarantee a strict equilibrium more
specific than common knowledge. In particular, there is some
information structure I for which M is not strictly truthful.

The proof creates an information structure where one
player’s partition is finer than the other’s, then shows that
the other player (and thus the mechanism’s reward rule) can-
not distinguish between two different posteriors of the first
player.

Uninformative equilibria. In IEWV, the goal is to design
mechanisms with “good” equilibria in which information
is revealed. However, it has previously been noted infor-
mally and observed for individual mechanisms or special
cases (Lambert and Shoham 2008; Jurca and Faltings 2005;
Della Penna and Reid 2012) that such mechanisms often also
have equilibria that are “bad” in some way. The conjecture
that this holds more generally may be considered something
of a suspected folk theorem in the literature.

The following characterization formalizes this intuition
in a very broad setting and for very “bad” equilibria: those
in which absolutely no information is revealed. Intuitively,

the characterization says that, if we take a game of IEWV
and ignore the signals received by each player, we can treat
it as a game of complete information (e.g. in normal form);
under very weak conditions, this game has an equilibrium,
and we can show that this equilibrium is an “uninformative”
equilibrium in the original game of IEWV.

Theorem 3. A strategy is termed uninformative if it draws
actions from the same distribution in every state of the world
(i.e. for every signal observed). A game of IEWV has an
equilibrium made up of uninformative strategies if and only
if there exists a Nash equilibrium in the two-player complete-
information game whose payoff matrix is given by its reward
rule.

Player Inference and Focal Equilibria
Suppose that, in an output agreement game, player 1 is pre-
sented with a given query; she might initially consider a
Π1-specific (truthful) strategy. But she knows that player 2
should play a best response, which in general is not neces-
sarily Π2-specific; and then she (player 1) should switch to a
best response to that strategy, and so on. We refer to this the
process of computing a sequence of best response strategies
as player inference. 4 An example player inference process
is given in Figure 1; it gives an example where players are
asked to report the most likely realization of a random vari-
able, which may be either F or4. We revisit the example in
Theorem 5.

Ideally, this inference process would converge to the
common-knowledge-specific equilibrium (since it was shown
in the previous section that this is the “best” equilibrium).
We can show that this does indeed happen when eliciting the
mean of a random variable.

Theorem 4. Let t be a random variable taking values in
Rn. There is an output agreement mechanism for eliciting
the mean of t such that any sequence of best response strate-
gies, beginning with a Πi-specific strategy, converges to a
Π-specific equilibrium.

The proof is somewhat notationally involved and uti-
lizes a result of (Samet 1998), but is straightforward. The
intuition is to reward both players by the Euclidean dis-
tance between their reports, h(x, y) = −d(x, y)2 where
d(x, y) = ‖x− y‖2 =

√∑n
i=1 |xi − yi|2. With this choice,

a best response is exactly the expected value of the other
player’s report; iterated best responses involve iterated expec-
tations over various subsets of states, weighted by various
posterior probabilities on these states; and on average, the
weight on each state converges to the common-knowledge
posterior probability of that state. (The heavy lifting in prov-
ing this is done by (Samet 1998).) This gives an expectation
of t according to common knowledge.

This result is encouraging because many natural tasks may
be modeled as reporting the mean of some random variable.
These could include straightforward numerical queries such

4It is of note that this process does not consist of players taking
or observing actions (as opposed to best-response dynamics and
fictitious play); rather, it is the hypothetical process of a rational
agent computing the optimal strategy to play.



ω1

P [ω1] = 0.40

t = F

ω2

P [ω2] = 0.35

t = 4

ω3

P [ω3] = 0.25

t = 4

(a) The three possible states of the world ω1, ω2, ω3

with their prior probabilities and the value of the ran-
dom variable t in each.

{ω1}

Pr [ω1] = 1.0

mode = F

{ω2, ω3}

Pr [ω2] = 0.58,Pr [ω3] = 0.42

mode = 4

(b) Player 1’s signal structure: the left signal when
the state is ω1, the right when it is ω2 or ω3. For each
signal, the posterior beliefs and the “mode” (most
likely value) of t.

{ω1, ω2}

Pr [ω1] = 0.53,Pr [ω2] = 0.47

mode = F

{ω3}

Pr [ω3] = 1.0

mode = 4

(c) Player 2’s signal structure: the left signal when
the state is ω1 or ω2, the right when it is ω3; posterior
beliefs and mode of t for each. For both signals ob-
served, if player 1 is reporting truthfully, then player
2’s best response is to be truthful.

{ω1}

Pr [ω1] = 1.0

response = F

{ω2, ω3}

Pr [ω2] = 0.58,Pr [ω3] = 0.42

response = F

(d) Player 1’s signals and posterior beliefs again, this
time showing the best response when player 2 is report-
ing truthfully. Player 2’s best response to this strategy
will be to also always report F, and they will be in
equilibrium.

Figure 1: Information structure for an output agreement game.
Players are asked to report the “mode” (most likely value) of
t, which could be either F or 4. The players are paid 1 if
they agree and 0 if they disagree. A player’s best response
given her signal is whichever of F or4 is more likely to be
reported by her opponent. In this example, if we start with a
truthful strategy from either player and iteratively compute
best response strategies, we converge to an equilibrium where
both players always report F no matter what they observe.
(Furthermore, it is more likely that t is actually4.

as estimating the number of cells in a microscope image;
geographical tasks such as estimating the facility location that
would minimize average commute time for a large population;
or numerical prediction tasks for long-term events like yearly
snowfall (where waiting to reward agents until ground truth
becomes available may be undesirable).

However, this nice convergence result does not extend to

two of the other most natural properties: median and mode.
In fact, this holds more broadly than in Rn; we consider
(non-constant) random variables taking values in an arbitrary
metric space. By median of t, we mean a value in the range of
t that minimizes the expected distance to t[ω]. By mode, we
mean a value in the range of t with highest total probability.

Theorem 5. When |Ω| ≥ 3, no output agreement mecha-
nism for eliciting the median or mode of a random variable
in an arbitrary metric space ensures for all settings that a
sequence of best response strategies, beginning with a Πi-
specific strategy for either player i, converges to a Π-specific
equilibrium.

The key counterexample that proves this statement is given
in Figure 1. Note that in state ω3, both players are certain
that the true realization of the random variable is4, yet both
report F due to their uncertainty about the other’s report.
Furthermore, this may be generalized to an arbitrarily bad
example. Intuitively, let the true realization be4 with proba-
bility 1− ε, and let each player’s partition divide up the state
of the world into sets with probability 2ε, but all overlapping
(so each element of 1’s partition has ε overlap with each of
two different elements of 2’s partition, and vice versa). When
the realization is F, player 1 always observes this but player
2 is unsure. Now by modifying probabilities slightly to break
ties “toward” F, we can cause a cascading sequence of best
responses so that, at the end, both players always report F
even though the realization is almost always4.

Conclusions
Output agreement is a simple and intuitive mechanism. How-
ever, when formalized and examined from the point of view
of information elicitation without verification, it raises sur-
prisingly complex questions. These include the notion of
specificity of player reports and the identification of common-
knowledge-specific equilibria in output agreement, as well as
the question of player inference and focal equilibria in this
setting. We hope that these concepts will find use outside of
output agreement mechanisms in the IEWV literature.

Output agreement mechanisms, meanwhile, are interesting
in their own right, providing several advantages over other
mechanisms. First, they do not require the mechanism de-
signer to assume anything about the signal structure of the
participants. Second, it is conceptually simpler and easier
to explain and implement, which may be beneficial in prac-
tice. Third, it allows for any report space, which includes
e.g. asking players to compute on their signals, whereas other
mechanisms tend to be limited to reporting of (often binary)
signals. Fourth, it is robust in that its equilibrium guarantee
holds for any signal structure.

Moreover, it turns out that this last property cannot be
achieved by mechanisms that elicit private information in
equilibrium. Output agreement’s common knowledge guar-
antee is the best we can hope for if we desire this robustness
property. Another downside of output agreement, that it has
“uninformative” equilibria, turns out to be inherent to the
IEWV setting: All other mechanisms have them too. These
impossibility results may also contribute to the IEWV litera-
ture by helping illustrate the nature of these difficulties.
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Proofs for Equilibrium Results
Theorem (Theorem 2). Let T be any query and M any
mechanism for IEWV. Then M cannot guarantee a strict
equilibrium more specific than common knowledge. In par-
ticular, there is some information structure I for which M is
not strictly truthful.

Proof. The approach will be to start by ruling out strict truth-
fulness, then extend to any solution more specific than com-
mon knowledge. We will consider a player whose truthful
response depends on which signal she receives, but who
is much better informed than her opponents. There will be
two signals where her query specifies two different truthful
responses, but her best responses will be the same. In any
equilibrium, in one of these cases she has a best response that
is not a truthful response to the query.

We need the basic assumption that the query is nontrivial.
A query T is considered trivial if, for every I , for each player
i, Ti(p) is the same for all possible posteriors p = Pr[ω |
Πi(ω

∗)]. A trivial query would mean that all players should
always report the same thing no matter what information they
observe.



So consider, by nontriviality, a prior P [ω], player i, and
partition Πi such that, for any probability distribution pi
on Ai, there is some state in which pi is not truthful, i.e.
pi 6= Ti(Pr [ω | Πi(ω

∗)]) for some ω∗. Consider a game
with prior P [ω] in which player i has partition Πi and all
other players j have a trivial partition Πj = {Ω}.

Let (s1, . . . , sn) be a truthful equilibrium. Pick a particular
state ω∗; in this state, player i plays according to the distribu-
tion p∗i = si(Πi(ω

∗)). Since (s1, . . . , sn) is an equilibrium,
p∗i maximizes expected utility against s−i in state ω∗. But s−i
is constant on all states of the world (since players 2, . . . , n
receive the same signal in every state). So construct the strat-
egy s′i where, for every ω, s′i(Πi(ω)) = p∗i . We immediately
have that s′i is also a best response to s−i.

But by nontriviality, there is some state ω′ ∈ Ω such that
p∗i 6= Ti(Pr [ω | Πi(ω

′)]). Thus, s′i is not a truthful strategy;
hence (s1, . . . , sn) is not a strictly truthful equilibrium.

Now, we simply notice that the proof works, not just for
truthfulness, but for any Π̂-specific equilibrium where Π̂ is a
strictly finer partition that the common-knowledge partition
Π. We can construct the same counterexample in this case.

To prove Theorem 3, we define our terms more formally
and introduce the notation G′ for a complete-information
version of the game G.

Definition 3. A strategy si for player i is uninformative
if for all ω, ω′, si(Πi(ω)) = si(Πi(ω

′)). An equilibrium
(s1, . . . , sn) is uninformative if si is uninformative for all i.

Definition 4. (G′) For any Bayesian game G = (M, I) for
information elicitation without verification, let G′ denote the
induced simultaneous-move game of complete information
where each player i selects and reports an action ai ∈ Ai

and receives a payoff of hMi (I, a1, . . . , an). A strategy in G′
is a probability distribution over actions; a profile of best
response strategies is a Nash equilibrium.

Theorem (Theorem 3 restated). A game G of information
elicitation without verification has an uninformative equilib-
rium if and only if there exists a Nash equilibrium in G′.

Proof. We show a one-to-one correspondence between the
two. First, we note that strategy sets in G′ are vectors of prob-
ability distributions (p1, . . . , pn) from which players draw
their actions. Second, we note that uninformative strategy
sets in G are determined uniquely by a vector of distribu-
tions (p1, . . . , pn), because for each i and for all ω, ω′ ∈ Ω,
si(Πi(ω)) = si(Πi(ω

′)) = pi. Therefore, there is a one-to-
one correspondence between strategy sets in G′ and uninfor-
mative strategy sets in G. But each player i’s reward for a
realized profile of actions (a1, . . . , an) is identical in G′ and
in G (by construction of G′). So when each player j draws
an action from pj , drawing actions from to pi maximizes
i’s expected utility in G′ if and only if it does so in G. This
completes the proof.

Proofs for Player Inference Results
Theorem (Theorem 4). Let t be a random variable taking
values in Rn. There is an output agreement mechanism for

eliciting the mean of t such that any sequence of best response
strategies, beginning with a Πi-specific strategy, converges
to a Π-specific equilibrium.

In our context, a random variable taking values in some
space X is a mapping t : Ω → X where t[ω] specifies the
value of t when the state of the world is ω. Thus the query
for eliciting the mean in Rn is T (p(ω)) = Eω∼p t[ω].

Proof. We select d to be the Euclidean distance and h to be
any affine transformation of −x2. This choice ensures that
a player’s best response is to report her expected value of
her opponent’s report. More formally, it is straightforward
to verify that the unique maximizer of Eω h(d(a, t[ω])) is
a = Eω t[ω], where the expectation is taken according to the
same distribution in both cases.

We first note that a Πi-specific report of the mean puts full
support on a single response; likewise, by the above, all best
responses put full support on a single response (since each is
an expected value). Therefore, when considering a sequence
of best response strategies beginning with a Πi-specific one,
we need only consider such strategies.

Now we will view a player’s strategy si as a ran-
dom variable Fi where Fi[ω] is the report given full
support by si(Πi(ω)). Consider the sequence t, F

(1)
i ,

F
(2)
j , F

(3)
i , F

(4)
j , . . . ; this is in correspondence with a se-

quence of best response strategies where F (1)
i is Πi-specific

and each random variable in the sequence consists of expec-
tations of the previous variable according to the appropriate
posterior beliefs. Formally, in each state ω∗, F (k)

j [ω∗] =∑
ω Pr [ω | Πj(ω

∗)]F
(k−1)
i [ω], and the same holds with i

and j reversed. This construction allows us to use the follow-
ing nice result of Samet:

Lemma 1 (Theorem 2′ and Theorem 1′ of (Samet 1998)).
Let t be a random variable taking values in R and consider
the sequence t, F (1)

i , F
(2)
j , . . . of iterated expected values

restricted to states of a fixed element Q of the common-
knowledge partition Π. If and only if player beliefs are consis-
tent with the existence of a common prior, then this sequence
converges on states in Q, and its value in each state ω∗ ∈ Q
is the same; moreover, this value is

∑
ω Pr [ω | Q] t[ω].

This gives that, when t ∈ R, the sequence of iterated ex-
pected values converges to the common-knowledge expected
value. To use this result, consider any fixed Q ∈ Π. We note
that the expected value of a random variable in Rn is an n-
tuple whose k-th entry is the expected value of the k-th entry
of the random variable. Therefore, for each k = 1, . . . , n,
a sequence of best responses F (1)

i , F
(2)
j , . . . involves alter-

nately computing, for each ω∗, the expected value of the
previous strategy’s k-th entry. Therefore, by Samet, the k-th
entry of the best response converges to the expected value
of the kth entry of t according to the common-knowledge
posterior when ω∗ ∈ Q.

Because this holds for all entries k of t, this implies that
in every state ω∗, the player strategies converge to reporting
the expected value of t according to the common-knowledge
element Π(ω∗). Finally, by Theorem 1, we have that reporting



the common-knowledge mean actually is an equilibrium. So
the inference process converges to the equilibrium where
players report the common-knowledge mean.

Theorem (Theorem 5). When |Ω| ≥ 3, no output agreement
mechanism for eliciting the median or mode of a random
variable in an arbitrary metric space ensures for all settings
that a sequence of best response strategies, beginning with
a Πi-specific strategy for either player i, converges to a Π-
specific equilibrium.

Proof. We first demonstrate that a necessary condition for
a sequence of best response strategies to converge to a Π-
specific equilibrium would be that the composition of reward
function h and distance metric d be a strictly proper scor-
ing rule5 for the given property (median or mode). We then
show that no mechanism with this property is successful
by constructing a counterexample for any nontrivial report
space.

Consider the case where player 2 is completely informed:
the partition Π2 consists of singleton sets. In every state of
the world, player 2 learns the exact value of t. Let player
1 have some strictly coarser partition. Now consider a Π2-
specific strategy of player 2; player 1 has some best response
s1. Then player 2’s best response will be to exactly mimic
this strategy; player 2 can set s2({ω∗}) = s1(Π1(ω∗)) for
every state ω∗. Both players receive the maximum reward in
every state, so this is an equilibrium.

This equilibrium is common-knowledge-specific when-
ever player 1’s best response to a Π2-specific strategy is Π1-
specific (since Π1 = Π in this case). But for either median or
mode, a Π2-specific strategy is to simply report the value of
the random variable in the observed state. So player 1 faces
a scoring rule h(d(s1(Π1(ω∗)), t[ω∗])) in state ω∗. Player 1
has a strict incentive to best-respond truthfully according to
Π1 if and only if h is a strictly proper scoring rule for the
appropriate property.

Thus, to elicit either the median or mode, h composed
with d must be a strictly proper scoring rule; that is, a best
response must be to report the median (respectively, mode)
of an opponent’s strategy. Now construct a counterexample
of a random variable whose range consists of two distinct
values. Without loss of generality, suppose there are only
three states of the world (otherwise, split them into three
groups arbitrarily and treat each group as a state). Then we
construct the information structure in Figure 1, where F
and 4 represent the two values in the range (and with an
arbitrary, but fixed, distance between them). In this case, the
median and mode necessarily coincide, and a best response
(as argued above) must be the mode of the opponent’s strategy.
As demonstrated in Figure 1, the common-knowledge most
likely value is 4; however, the inference process always
reaches an equilibrium in which F is always reported.

5In this context, a scoring rule S(a, a∗) takes a report a ∈ A
and a realization a∗ ∈ A of a random variable and returns a payoff;
it is strictly proper for a property if, for fixed beliefs, reporting the
value of the property according to those beliefs uniquely maximizes
expected score according to those beliefs.


