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1 INTRODUCTION
Suppose that a decision maker, the principal, asks an agent to estimate the probability that it will
rain tomorrow. The principal would like the agent to respond with their true belief. The principal
can incentivize truthfulness by asking the agent for the prediction today, then paying the agent
an amount of money tomorrow that depends on whether it actually rained and how accurate the
prediction was. Payment schemes in this setting are called scoring rules. For example, using Brier’s
[1950] famous quadratic scoring rule, the principal would pay the agent $1 − (1 − p̂)2 if it rains, and
$1 − p̂2 if it does not, where p̂ is the probability that the agent reported. For example, if p̂ = 0.6,
then the agent earns $0.84 if it rains and $0.64 otherwise. Calculus shows that if the agent wishes
to maximize their expected payment, it is uniquely optimal for the agent to report their truthful
subjective belief. Scoring rules with this property are called strictly proper.
The principal may wish to obtain an estimate from several agents. If each agent is paid their

quadratic score, every agent is incentivized to report truthfully, just as in the single-agent case.
However, French [1985] observed that the quadratic score may not be incentive compatible if agents
are able to collude. Assume that the agents know each other, can communicate their beliefs, and can
transfer money among themselves. Suppose three agents were to truthfully report p̂ = (0.2, 0.4, 0.6).
Then the quadratic score pays them a total of $0.36 + $0.64 + $0.84 = $1.84 if it rains, and
$0.96 + $0.84 + $0.64 = $2.44 otherwise. If the group instead decided to calculate their mean belief
(0.4) and report p̂ = (0.4, 0.4, 0.4), then quadratic score payments are $0.64 + $0.64 + $0.64 = $1.92
if it rains, and $0.84 + $0.84 + $0.84 = $2.52 otherwise. In both cases, the group obtains strictly
more money than before. They could then distribute their gains in some way so that each member
is strictly better off, no matter the outcome. This example is general: groups with at least some
disagreement are always strictly better off if they report their mean belief. French [1985] shows
that this is true not only for Brier’s quadratic rule, but for every concave scoring rule. Chun and
Shachter [2011] termed this phenomenon arbitrage, since it allows groups of colluding agents to
risklessly increase their payoff. They showed that all strictly proper scoring rules, whether concave
or not, permit arbitrage, and that more complicated multi-agent rules are also vulnerable, including
market scoring rules [Hanson, 2003] and competitive scoring rules [Kilgour and Gerchak, 2004,
Lambert et al., 2008].



We may hope that collusion of this type is uncommon due to coordination and communication
difficulties. However, the profit opportunity might encourage third parties to act as hidden inter-
mediaries, by collecting individual reports, reporting aggregate beliefs to the principal, and then
sharing the gain from arbitrage. Wide-spread arbitrage can come at a high cost to the principal’s
goals. For example, if the principal plans to pool the reports into an aggregate forecast, the result
will be distorted.1 In our example, all colluding agents report the same probability, thereby hiding
the true level of disagreement among agents, which may cause the principal to have too much
confidence in an aggregate forecast. Misreports due to arbitrage also obscure the forecasters’ relative
accuracy, which is problematic if the principal wants to identify the most accurate forecasters.
Fundamentally, colluding agents are extracting additional payment, at the expense of either the
principal or some other agents, without contributing correspondingly valuable information.
Chun and Shachter [2011] hoped to develop a mechanism resistant to collusion, but concluded

that it “is still an open question whether there is any strictly proper mechanism that does not admit
arbitrage, but it seems unlikely.” The question remains open. However, if either strict properness or
no-arbitrage is slightly weakened, we show that collusion-proof mechanisms do exist.

First, in Section 3, we design a strictly proper mechanism that does not admit arbitrage as long
as there is an ϵ > 0 such that each agent report is between ϵ and 1 − ϵ . In practice, this is a mild
restriction. It holds, for example, in systems that ask agents to report a prediction anywhere between
1% and 99% in 1% intervals.2 Each of the mechanisms studied by Chun and Shachter [2011] provides
arbitrage possibilities for every possible profile of agent reports with at least some disagreement. In
contrast, our mechanism avoids arbitrage in almost all cases, except for agents reporting extremal
beliefs. A drawback of our mechanism is that, when choosing ϵ small, very large payments may be
required. If payments on extreme instances are not high enough, then there exist instances where
the average report is close to 0.5 on which all agents receive almost indistinguishable scores. While
this may limit the practical viability of our scheme, the existence of a no-arbitrage mechanism
for a wide class of agent reports sheds a new optimistic light on Chun and Shachter’s conjecture,
prompting hope for the existence of a fully arbitrage-free, strictly proper mechanism.
Second, in Section 4, we design weakly proper mechanisms that fully avoid arbitrage for unre-

stricted agent reports. We begin by studying mechanisms where an agent’s payoff depends only on
their own report. We fully characterize the set of arbitrage-free and weakly proper scoring rules as
those that offer at most two sets of conditional payments, for example paying $1 if and only if the
agent’s report is greater than 0.5 for the true outcome. Under these mechanisms, truth-telling is an
undominated strategy, but not uniquely. By combining these rules with a rule that pays each agent
the score of the median report, we obtain arbitrage-free mechanisms that are weakly dominant
proper : truth-telling is the unique undominated strategy. Weakly dominant proper mechanisms are
close to strictly proper: incentives are not strict only if some profiles are impossible. We consider
these weakly dominant proper mechanisms to be compelling practical options for a principal who
wants to avoid collusion.

2 PRELIMINARIES
Let X be a Boolean3 random variable: an event with possible outcomes 0 and 1. Let N be a set of n
agents. Each agent has a belief pi ∈ [0, 1] as to the probability that X = 1, and reports p̂i ∈ [0, 1].

1The unweighted arithmetic mean does not change if colluding agents report their group mean, as in our example. However,
the principal may wish to compute a weighted mean, a geometric mean [Genest and Zidek, 1986], or another aggregate
measure such as a supra-Bayesian inference [Morris, 1977].
2Systems based on the logarithmic scoring rule often impose a similar bound on reports to avoid infinite agent losses.
3We focus on the two-outcome case in the main body of the paper. One can extend our results to any finite discrete outcome
space, as we show in Appendix A.
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Following the nomenclature of Chun and Shachter [2011], a contract function Π : [0, 1]n × {0, 1} →
Rn maps agent reports and the event outcome to payments. A positive payment is a payment from
the mechanism to the agent. We refer to agent i’s payment as Πi . Contract functions are a general
class of mechanisms that include standard proper scoring rules [Brier, 1950, Gneiting and Raftery,
2007, Savage, 1971], market scoring rules [Hanson, 2003], competitive scoring rules [Kilgour and
Gerchak, 2004], and wagering mechanisms [Lambert et al., 2008].
A contract function Π is weakly proper if for every agent i with belief pi , every vector of other

agents’ reports p̂−i , and every p̂i ,

piΠi ((pi , p̂−i ), 1) + (1 − pi )Πi ((pi , p̂−i ), 0)
≥ piΠi ((p̂i , p̂−i ), 1) + (1 − pi )Πi ((p̂i , p̂−i ), 0).

We say that Π is strictly proper if the inequality is strict whenever p̂i , pi . Thus, for a strictly proper
Π, the expected payoff to i is uniquely maximized when i reports the true belief pi .
A contract function Π admits arbitrage if there exists a coalition C ⊆ N and vectors q = (qi )i ∈N

and r = (ri )i ∈N with qi = ri for all i < C for which∑
i ∈C

Πi (q, x) ≥
∑
i ∈C

Πi (r, x) for each x ∈ {0, 1},

and the inequality is strict for some x . This definition is adapted from Chun and Shachter [2011],
who define a version that requires that arbitrage is possible whenever agents disagree. We say that
a contract function that does not admit arbitrage is arbitrage free.
A scoring rule, s : [0, 1] × {0, 1} → R, is a function that assigns a real-valued score to an agent

based only on the agent’s report and the realized outcome. We say that s is weakly (resp. strictly)
proper if the corresponding contract function Π that pays each agent

Πi (p̂, x) = s(p̂i , x)

is weakly (resp. strictly) proper.
It is easy to see that a contract function is weakly (resp. strictly) proper if, and only if, for all fixed

reports of the other agents p̂−i, the payment to agent i takes the form of a weakly (resp. strictly)
proper scoring rule.

Scoring rule characterization. We will utilize the well-known characterization of proper scoring
rules [Gneiting and Raftery, 2007, McCarthy, 1956, Savage, 1971, Schervish, 1989].

Theorem 2.1. Scoring rule s is (strictly) proper if and only if there exists a (strictly) convex function
G : [0, 1] → R with

s(p̂, x) = G(p̂) + dG(p̂) · (x − p̂),

where dG(p̂) is a subgradient of G at p̂. Furthermore, G(p) is the expected score for truthul reporting
with belief p.

Write s(p̂;p) for the expected score of report p̂ under belief p. From Theorem 2.1 and linearity of
expectation, we obtain s(p̂;p) = G(p̂) + dG(p̂) · (p − p̂). Note that s(p;p) = G(p) as claimed.

A pictorial representation [Gneiting and Raftery, 2007] is shown in Figure 1. GivenG and a fixed
report p̂ = 0.6, the function s(0.6;p) traces a subtangent line of G, tangent at p = 0.6. Its slope is
equal to the subgradient dG(p̂). The agent’s score in outcome 0 or 1 is the height of this subtangent
at the vertical line p = 0 or p = 1, respectively. An agent who believes p = 0.4 and reports p̂ = 0.6
expects to receive payment equal to the height of the subtangent at the vertical line p = 0.4, an
amount strictly worse than G(0.4), their expected payment when reporting truthfully.
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Fig. 1. Illustration of Theorem 2.1 for an agent with belief p = 0.4 who reports p̂ = 0.6. The horizontal axis is
belief and the vertical axis is score. The line segment is s(0.6;p), the expected score for report 0.6 under belief
p. Its endpoints are the scores s(0.6, 0) and s(0.6, 1) in outcomes 0 and 1, respectively.

3 AN ARBITRAGE-FREE RULE UNDER BOUNDED REPORTS
In this section we present a strictly proper contract function. It does not permit arbitrage when
the reports of the agents are bounded in (ϵ, 1 − ϵ), for some ϵ > 0. We denote our contract
function Mk , where k is a parameter that is tuned depending on ϵ . Payments are defined by
Mk

i (p̂, x) = (
∑n

j=1 p̂j −
n
2 )

k + k(x − p̂i )(
∑n

j=1 p̂j −
n
2 )

k−1, where k is an even integer. We first verify
thatMk is strictly proper.4

Lemma 3.1. Mk is strictly proper.

Proof. The result follows from Theorem 2.1, setting G(p̂i ) = (
∑n

j=1 p̂j −
n
2 )

k . □

To gain intuition, let us describeMk in words, with the assistance of Figure 2. The blue curve
is the function Ḡ : [0,n] → R defined by Ḡ(p̂) = (

∑n
j=1 p̂j −

n
2 )

k , which defines payoffs over the
space of all possible reports. For fixed reports of other agents p̂−i summing to c , agent i is faced
with a scoring rule derived from G(p̂i ) = (c + p̂i −

n
2 )

k , corresponding to a width-1 interval of the
function Ḡ. An interesting feature ofMk is that each agent receives the same expected payment
from truthful reporting: Pictorially, each agent’s payments are determined by a subtangent of Ḡ
taken at the same point.

We now show that if it is possible to bound agents’ reports away from 0 and 1, then there exists
a k for whichMk is arbitrage free. The proof proceeds by first showing that the payment a group of
agents receives is a function only of the sum of their reports, and that, while all reports are within
(ϵ, 1 − ϵ), this function is increasing for X = 1 and decreasing for X = 0.

Theorem 3.2. Suppose there exists an ϵ > 0 such that p̂j ∈ (ϵ, 1 − ϵ) for all agents j. ThenMk is
arbitrage-free whenever k > n+2

2ϵ .

Proof. Consider reports p̂ and a coalition of agents C = {1, . . . , |C |}, where |C | ≥ 2. Let us
examine the total payment to agents in C when X = 1. For conciseness, given a subset S ⊆ N , we

4While we may want to bound the reports away from extremes, we do not require any assumptions on the agents’ beliefs. If
beliefs fall outside of the range of allowable reports, strict properness implies that agents will prefer to report the allowable
report closest to their belief.
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Fig. 2. Illustration of contract function Mk , k = 2, for agent 1 of four. The horizontal axis is the sum of all
reports p̂i and the vertical axis is score. We consider three examples: the sum of the reports of agents 2, 3,
and 4 is 0.25 (left), 1.5 (middle), and 3 (right). Each case induces a strictly proper scoring rule for agent 1, as
in Figure 1: the expected score function Ḡ is shown in solid blue along with subtangent s(0.6;p) in orange.

use the notation p̂S =
∑

j ∈S p̂j to denote the sum of reports of agents in S .∑
j ∈C

Mk
j (p̂, 1) =

∑
j ∈C

((p̂N − n
2 )

k + k(1 − p̂j )(p̂N − n
2 )

k−1)

= |C |(p̂N − n
2 )

k−1
(
p̂N − n

2 +
k
|C |

∑
j ∈C

(1 − p̂j )
)

= |C |(p̂N − n
2 )

k−1(p̂N \C − n
2 + k + (1 −

k
|C |

)p̂C )

Note that this is a function of p̂C and p̂N \C only. Now we differentiate with respect to p̂C =∑
j ∈C p̂j :
d

d(p̂C )

(∑
j ∈C

Mk
j (p̂, 1)

)
= (k − 1)|C |(p̂N − n

2 )
k−2(p̂N \C − n

2 + k + (1 −
k
|C |

)p̂C ) + (1 − k
|C |

)|C |(p̂N − n
2 )

k−1

= |C |(p̂N − n
2 )

k−2 ((k − 1)(p̂N \C − n
2 + k + (1 −

k
|C |

)p̂C ) + (1 − k
|C |

)(p̂N − n
2 )
)

= k |C |(p̂N − n
2 )

k−2 (k − 1 + (1 − 1
|C |

)p̂N \C + (1 − k
|C |

)p̂C − n
2 (1 −

1
|C |

)
)

We show that the derivative is positive if k > n+2
2ϵ . The multiplicative factor k |C |(

∑n
i=1 p̂i −

n
2 )

k−2 is
positive since k is even, so we can ignore it and focus on the remaining part of the expression:

k − 1 + (1 − 1
|C |

)
∑
j<C

p̂j + (1 −
k

|C |
)
∑
j ∈C

p̂j −
n

2 (1 −
1
|C |

) ≥ k − 1 − k

|C |

∑
j ∈C

p̂j −
n

2

> k − 1 − k

|C |
|C |(1 − ϵ) −

n

2
= kϵ − 1 − n

2 > 0

The first inequality comes from removing positive terms, the second from the fact that p̂j < 1 − ϵ
for all j, and the final inequality from the definition of k .

In particular, the positive derivative implies that any coordination in which the colluding agents
decrease the sum of their reports results in them collectively receiving a strictly lower payment
when X = 1. Therefore, any successful arbitrage must have the agents in C increase the sum of
their reports. But, becauseMk is symmetric in the possible outcomes, an identical argument shows
that if the agents in C increase the sum of their reports, their total payment for outcome X = 0
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would strictly decrease. Hence, arbitrage is not possible if the colluding agents change the sum of
their reports. However, recall that the expression for

∑
j ∈C Mk

j (p̂, 1) is a function of p̂C and p̂N \C .
Therefore, any group deviation that does not change the sum p̂C does not change the total payment
for X = 1 or, symmetrically, for X = 0, and so cannot constitute arbitrage. This completes the
proof. □

Our next example demonstrates the failure ofMk to be fully arbitrage free.

Example 3.3. ConsiderMk with k = 2 (for higher k , a similar example works but requires more
extreme reports). Let p = (0, 0, 0, 0.98, 0.98). If X = 0, each of the last two agents receives payment
(1.96 − 2.5)2 − 0.98 · (1.96 − 2.5) = 0.8208. If X = 1, then each of them receives (1.96 − 2.5)2 + 0.02 ·
(1.96 − 2.5) = 0.2808. Suppose they both instead report 0.97 (so p̂ = (0, 0, 0, 0.97, 0.97)). Now, each
of the last two agents receives payment (1.94 − 2.5)2 − 0.97 · (1.94 − 2.5) = 0.8568 if X = 0 and
(1.94 − 2.5)2 + 0.03 · (1.94 − 2.5) = 0.2968 if X = 1. Under the manipulation, agents 4 and 5 receive
higher payments in both outcomes, constituting arbitrage.

We end this section by elaborating on the relationship between k , n, and ϵ . Even for n = 5
agents and ϵ = 0.1 (reports bounded between 0.1 and 0.9), our bound on k requires k > 35. Since
payments are on the order of (

∑n
i=1 p̂i −

n
2 )

k , the principal may have to make payments as large
as (5 − 5

2 )
35 ≈ 1013. Of course, these payments can be scaled down to fractional pennies without

affecting incentives, as is standard in elicitation settings to deal with real-world budget constraints,
but then it becomes possible that agents in other profiles (say, when

∑n
i=1 p̂i ≈

n
2 ) receive payments

that are very close to 0, no matter what they report. Designing a rule that provides reasonable
incentives to agents while also permitting the principal a reasonable loss in the worst case is an
interesting question that we leave open.

4 WEAKLY PROPER ARBITRAGE-FREE RULES
In the previous section, we presented a contract function that is strictly proper and arbitrage free
when reports are bounded away from 0 and 1. In this section, we relax strict properness to weak
properness, with the goal of achieving fully arbitrage-free contract functions.
Weak properness on its own is a very weak guarantee. Paying each agent a constant amount

Πi (p̂, x) = d is weakly proper, because no agent can profit by reporting p̂i , pi . It is also arbitrage
free, since the total payment to any group of agents is also fixed by the mechanism in advance.
However, this is not a compelling contract function; a constant score can hardly be called a scoring
function at all. Agents paid a fixed amount have no incentive to gather or process information if
there is even a minimal cost to do so. We will consider two properties to avoid such degenerate
contract functions.

First, we want a contract function that distinguishes between good and bad reports. As a minimal
requirement, we say that a contract function Π satisfies weak distinguishability if, whenever there
exist agents i, j with p̂i = 0 and p̂j = 1, we have Πi (p̂, 0) > Πj (p̂, 0) and Πi (p̂, 1) < Πj (p̂, 1). An
agent with a maximally accurate report should receive a strictly higher payment than an agent
with a maximally inaccurate report.

Second, observe that under the constant payment rule, agents can misreport safely: even without
knowing the reports of the other agents, an agent can misreport and be guaranteed to not regret
their misreport once the other reports are revealed. If a contract function is weakly proper and does
not permit safe misreports, we say that it is weakly dominant proper. Formally, a weakly proper
contract function Π is weakly dominant proper if, for any agent i with belief pi and any report
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Fig. 3. A generic scoring rule that is not 1-choice or 2-choice, with three particular choices highlighted.

p̂i , pi , there exist reports p̂−i of the other agents such that
piΠi ((pi , p̂−i ), 1) + (1 − pi )Πi ((pi , p̂−i ), 0)
> piΠi ((p̂i , p̂−i ), 1) + (1 − pi )Πi ((p̂i , p̂−i ), 0).

Thus, for any misreport, there is a possible configuration of others’ reports such that the expected
value of the misreport is strictly lower than the expected value of reporting truthfully. Stated
in game-theoretic terms, reporting truthfully is a weakly dominant strategy.5 Weakly dominant
properness was implicitly defined, but not named, by Freeman et al. [2017].

4.1 Weakly Distinguishing Scoring Rules
Let us more closely examine contract functions that pay all agents according to a fixed scoring rule.
Chun and Shachter [2011] showed that all such rules admit arbitrage whenever s is strictly proper.
What if s is only weakly proper? We know from our discussion above that there exists at least one
such rule—the constant payment rule—that is arbitrage free. In this section, we provide a complete
characterization of the class of arbitrage-free weakly proper scoring rules.

For any convex functionG , writeG(q) = maxi ∈I S i (q), for some index set I, where each S i is an
affine function defining contingent payments S i0 and S i1. Reporting p̂ is equivalent to choosing S i
where i = arg maxi ∈I S i (p̂), the affine function tangent to G at p̂. As a technicality, we assume no
redundant choices; that is, each S i is the unique optimal choice in expectation for at least one belief.
Say that G consists of ℓ choices if it is piecewise linear with ℓ ≥ 1 linear pieces, and call the

corresponding weakly proper scoring rule s an ℓ-choice scoring rule.

Theorem 4.1. Suppose that a contract function pays all agents according to a single proper scoring
rule s . Then the contract function is arbitrage free if and only if s is a 1-choice or 2-choice scoring rule.

Proof. If s is 1-choice, then the corresponding contract function is clearly arbitrage free since
payments do not depend on reports. If s is 2-choice, then the report space [0, 1] is divided into a
low and a high region, offering one affine function for each. Call these affine functions Sℓ and Sh .
By convexity, it must be the case that Sℓ0 > Sh0 and Sℓ1 < Sh1 . Any rearrangement of the colluding
agents’ reports in which more agents receive contingent payments Sh decreases their total payment
if X = 0, while the reverse is true if the rearrangement results in more agents with contingent
payments Sℓ . If the rearrangement does not change the number of colluding agents receiving
5Translated to notions of dominance in game theory (Shoham and Leyton-Brown [2008] provide an introduction), strict
properness corresponds to truthtelling being a strictly dominant strategy, weakly dominant properness corresponds to
weak dominance, and weak properness corresponds to very weak dominance.
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contingent payments Sh and Sℓ , then the total payment remains unchanged for both X = 0 and
X = 1. Therefore no arbitrage opportunity exists.

For the reverse direction, suppose that s is not 1-choice or 2-choice. So G is a maximum over
at least three affine functions Sa, Sb , Sc , each of which is the unique maximizer for at least some
q ∈ [0, 1]. Generically, the situation must be as pictured in Figure 3: convexity of G dictates that
Sa0 > Sb0 > Sc0 and Sc1 > Sb1 > Sa1 . We will show that some fractions of agents with contingent
payments Sa and Sc can arbitrage by all switching to Sb . Let p be a belief for which Sb is uniquely
optimal (note 0 < p < 1 by construction); then in particular

pSb1 + (1 − p)Sb0 > pSa1 + (1 − p)Sa0

pSb1 + (1 − p)Sb0 > pSc1 + (1 − p)Sc0

implying that, for all α ∈ [0, 1],

pSb1 + (1 − p)Sb0 > p
(
αSa1 + (1 − α)Sc1

)
+ (1 − p)

(
αSa0 + (1 − α)Sc0

)
(1)

Suppose an α fraction of agents are choosing Sa and a 1 − α fraction choose Sc . Consider the
conditions for which they have a higher average payoff than if they all chose Sb , under outcomes
X = 0 and X = 1 respectively. Because the payoffs are strictly monotone affine functions of α , there
exist unique thresholds ᾱ,

¯
α such that:

αSa0 + (1 − α)Sc0 ≥ Sb0 ⇐⇒ α ≥ ᾱ (2)

αSa1 + (1 − α)Sc1 ≥ Sb1 ⇐⇒ α ≤
¯
α (3)

Now we claim
¯
α < ᾱ : if there exists α for which the inequalities (2) and (3) hold simultaneously, we

get a contradiction with inequality (1). Intuitively, if the mixture of Sa and Sc is better on average
both when X = 0 and when X = 1, then the mixture would be better on average for belief p. This
implies

¯
α < ᾱ .

So let α∗ be a rational number satisfying
¯
α < α∗ < ᾱ . Write α∗ = n

n+m where n,m ∈ N and
construct an instance with n agents initially choosing Sa whilem agents initially choose Sc . Now
suppose all agents switch to selecting Sb . By (2) and (3) and the choice of α∗, their average payoff
strictly improves both when X = 0 and X = 1. This proves an arbitrage opportunity. □

If s is 1-choice then every agent receives the same payment, and so the contract function fails
weak distinguishability. However, when s is 2-choice, agents are separated into two groups based
on their reports. Those with higher reports (including p̂i = 1) get paid more than those with
lower reports (including p̂i = 0) when X = 1, and less when X = 0. Therefore these rules satisfy
weak distinguishability. They are not weakly dominant proper since an agent is always indifferent
between any two reports that induce the same contingent payments.

As a natural example of a 2-choice scoring rule, consider the 0-1 score paying $1 iff the agent’s
report favors the true outcome: p̂ ≥ 0.5 and X = 1 or p̂ < 0.5 and X = 0. This rule corresponds to
the 2-piecewise-linear function G(p̂) = max {p̂, 1 − p̂}.

4.2 Weakly Dominant Properness and the Median Rule
We now define a contract function that is arbitrage free and weakly dominant proper. Suppose for
convenience that n is odd and fix a strictly-proper scoring rule s . We will simply pay each agent
the score (according to s) of the median report.6 Formally,

Πi (p̂, x) = s(med(p̂), x).

6If n is even, we can use the left or right median instead.
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The median rule, like any rule that pays according to an aggregate statistic of all reports, is clearly
arbitrage free. In order for a group of colluding agents to change the payments made by the
mechanism, they must change the value of the aggregate statistic, which strictly decreases the total
payment for some outcome.

Additionally, the median mechanism is weakly dominant proper. For weak properness, consider
an agent i with belief pi and report p̂i . It is easy to see that either med(p̂) ≤ med((pi , p̂−i )) ≤ pi or
med(p̂) ≥ med((pi , p̂−i )) ≥ pi . In either case, i achieves a (weakly) higher expected payment by
reporting pi than p̂i .7
To show that the median mechanism satisfies the additional requirement for weakly dominant

properness, suppose that agent i reports p̂i > pi (the case p̂i < pi can be handled symmetrically).
We must exhibit reports p̂−i of the other agents for which i would have strictly preferred to report
pi . To do so, suppose that n−1

2 of the other agents report p̂j < pi and n−1
2 of them report p̂i < p̂j . If i

had truthfully reported pi , the median report would have been her report pi and she would receive
payment s(pi , x). Instead, the median report is her misreport p̂i and she receives payment s(p̂i , x).
By strict properness of s , agent i strictly prefers the former. We have proven the following theorem.

Theorem 4.2. The median payment rule is arbitrage free and weakly dominant proper.

The median payment rule does not satisfy weak distinguishability, because it pays all agents
identically.

4.3 Weakly Distinguishing and Weakly Dominant Proper Contract Functions
We now combine the mechanisms from each of the previous subsections to obtain a contract
function that preserves the desirable properties of both of them. Let s be a 2-choice proper scoring
rule, with corresponding convex function G consisting of affine functions Sℓ and Sh , defining
contingent payments Sh0 < Sℓ0 and Sh1 > Sℓ1 . Let c = min{Sℓ0 − Sh0 , S

h
1 − Sℓ1 }. Further, let r be a

strictly-proper scoring rule bounded in the interval [0, 1].
Define contract function s+ by

s+i (p̂, x) = s(p̂i , x) +
c

n + 1 · r (med(p̂), x).

That is, s+ pays each agent according to the sum of a 2-piecewise-linear proper scoring rule, and
some sufficiently small fraction of the median rule. In doing so, it inherits the weak distinguishability
of scoring rule s and the weakly dominant properness of the median rule, while preserving arbitrage-
freeness.

Theorem 4.3. The contract function s+ is weakly distinguishing, weakly dominant proper, and
arbitrage free.

Proof. Weak distinguishability follows immediately from the definition. For weakly dominant
properness, we note that s+ is weakly proper since it is the sum of two weakly proper rules. For
any report p̂i , pi , there exist reports of the other agents for which i would be better off reporting
pi than p̂i under the median rule. Therefore, i would be better off reporting pi than p̂i under s+ too.

For arbitrage freeness, consider some colluding coalition C , and two sets of reports q and q′

with qi = q′i for all i < C . Consider scoring rule s from the definition of s+. Denote by L ⊂ [0, 1]
the low region of the report space, in which agents receive contingent payments defined by Sℓ .
Let nL = |{i ∈ C : qi ∈ L}| and n′L = |{i ∈ C : q′i ∈ L}|. Let H = [0, 1] \ L denote the high region,
where agents receive contingent payments defined by Sh , with nH = |C | − nL and n′H = |C | − n′L .
We consider two cases.
7That an agent’s expected score is a single-peaked function of their report follows easily from Theorem 2.1.
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Case 1: Suppose that nL = n′L , which implies nH = n′H . Then for each x ∈ {0, 1} we have∑
i ∈C

s+i (q, x) = nLS
ℓ
x + nHS

h
x + |C | c

n+1r (med(q), x)

= n′LS
ℓ
x + n

′
HS

h
x + |C | c

n+1r (med(q), x)

=
∑
i ∈C

s+i (q
′, x) + |C | c

n+1 (r (med(q), x) − r (med(q′), x))

By properness of r , if r (med(q), x) > r (med(q′), x) for some x ∈ {0, 1}, then it must be the case
that r (med(q), 1 − x) < r (med(q′), 1 − x). Therefore, no arbitrage opportunity exists.
Case 2: Suppose that nL − n′L = n

′
H − nH > 0. The opposite case is symmetric. Then we have∑

i ∈C

s+i (q, 0) = nLSℓ0 + nHSh0 + |C | c
n+1r (med(q), 0)

= n′LS
ℓ
0 + n

′
HS

h
0 + (nL − n′L)(S

ℓ
0 − Sh0 ) + |C | c

n+1r (med(q), 0)

≥ n′LS
ℓ
0 + n

′
HS

h
0 + c + |C | c

n+1r (med(q), 0)

≥ n′LS
ℓ
0 + n

′
HS

h
0 + c + |C | c

n+1 (r (med(q′), 0) − 1)

> n′LS
ℓ
0 + n

′
HS

h
0 + |C | c

n+1r (med(q′), 0)

=
∑
i ∈C

s+i (q
′, 0)

The first inequality holds because nL − n′L ≥ 1 and Sℓo − Sh0 ≥ c , the second inequality because r is
bounded in [0, 1], and the final inequality because |C | < n + 1.
That

∑
i ∈C s+i (q, 1) <

∑
i ∈C s+i (q

′, 1) follows similarly, implying that no arbitrage opportunity
exists. □

Note that arbitrage freeness does not in general follow from combining two arbitrage-free rules,
and that the subtlety in the definition of s+ is necessary. Suppose that we had instead defined s+
without a small enough scaling of the median rule. In particular, suppose that s is the 0-1 score
defined earlier and r is the quadratic score (s(p̂i , x) = 1 − (p̂i − x)2). Consider the contract function
that pays each agent s(p̂i , x) + r (med(p̂), x). If p = (1, 1, 0) then the total payment to all agents is $1
if X = 0 and $5 if X = 1. But if instead the agents report p̂ = (0.5, 0.5, 0.5), their total payment is
$2.25 if X = 0 and $5.25 if X = 1.

5 CONCLUSION
We have explored mechanisms for truthfully eliciting probabilistic forecasts from individuals who
may collude with one another. When strict incentives for truthtelling are required, the principal can
avoid arbitrage provided that reports are bounded away from extreme probabilities. If incentives
can be relaxed, then arbitrage can be avoided with a mechanism in which truth-telling remains the
unique undominated strategy.

So far, we have only considered binary events. Using an inductive construction, one can extend
contract functions defined for a binary random variable to any random variable X with finitely
many values. The constructed contract function first pays agents based on their prediction for the
event X = 0, and, if the event X , 0 occurs, pays agents based on their predictions conditioned on
the eventX , 0. This construction preserves properness of various strengths and arbitrage freeness.
The mechanisms we have presented can therefore be extended in a straightforward manner to
elicit predictions for any discrete random variable. See Appendix A for details.
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Compelling and challenging open questions remain. In particular, we still do not know whether a
strictly proper and fully arbitrage-free contract function exists. In Section 3, we discussed an easier
open problem: Can a mechanism with similar guarantees to Mk be designed that has stronger
truth-telling incentives in practice? Towards an impossibility result, one could imagine adding
additional constraints to the mechanism design problem such as budget balance, requiring the
mechanism to pay out the same amount in total regardless of the reports.
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A BEYOND BINARY EVENTS
We now move beyond the case where X is a binary random variable. Suppose instead that X can
take values {0, 1, . . . ,m}. We show in this section that contract functions satisfying the properties
we consider in this paper for binary events can be extended to satisfy them also on events with
larger outcome spaces.

An agent’s belief is now a probability distribution pi ∈ ∆m ⊆ [0, 1]m+1, with pi ,0 + · · · +pi ,m = 1.
Analogously to the binary case, a contract function Π : (∆m)n × {0, 1, . . . ,m} → Rn decides agent
payoffs as a function of their reported beliefs and the outcome of X . We say that Π is weakly proper
if for every agent i ∈ N with belief pi , every vector of other agents’ reports (p̂j )j,i , and every p̂i ,
we have ∑m

j=0 pi , jΠi (p̂1, . . . , pi , . . . , p̂n, j)

≥
∑m

j=0 pi , jΠi (p̂1, . . . , p̂i , . . . , p̂n, j).

We say Π is strictly proper if the inequality is strict whenever p̂i , pi . We will write E[Π, pi , p̂i ] =∑m
j=0 pi , jΠi (p̂1, . . . , p̂i , . . . , p̂n, j) for the expected payoff under Π to i with belief pi and report p̂i ,

when the values of other agents’ reports are clear from the context. With this notation, weak
properness requires E[Π, pi , pi ] ≥ E[Π, pi , p̂i ] for all p̂i , for any fixed reports of other agents.

We say Π admits arbitrage if there exists a coalition C ⊆ N and vectors (qi )i ∈N and (ri )i ∈N with
qi = ri for all i < C for which∑

i ∈C

Πi ((qj )j ∈N , x) ≥
∑
i ∈C

Πi ((rj )j ∈N , x)

for each x ∈ {0, . . . ,m}, and the inequality is strict for some x . When Π does not admit arbitrage,
it is arbitrage-free.

Theorem. Suppose Π1 is a contract function defined for binary X . Then, for eachm ≥ 1, there is a
contract function Πm defined for X with values {0, . . . ,m} such that Πm is weakly proper (resp.,
strictly proper, arbitrage-free) whenever Π1 is.

The contract function Πm is defined inductively. Given a contract function Πm−1 that satisfies
the relevant properties for X with values {0, . . . ,m − 1}, we define Πm as the sum of two contract
functions: Πm = Γ+Λ. The first, Γ, scores agents based on their reports for the events {0, . . . ,m−1}
versus {m}:

Γ((p̂i )i ∈N , x) = Π1(((1 − p̂i ,m, p̂i ,m))i ∈N , 0) for x ∈ {0, . . . ,m − 1}
Γ((p̂i )i ∈N ,m) = Π1(((1 − p̂i ,m, p̂i ,m))i ∈N , 1)

The second contract functionΛ scores agents for their reports conditional on the event {0, . . . ,m−

1} obtaining. If an agent reports that the event {0, . . . ,m − 1} is impossible (i.e., reports p̂i ,m = 1),
then we take the “conditional” report to be uniform over {0, . . . ,m − 1}, to avoid division by zero.
Formally, for each i ∈ N , we take

Λi ((p̂i )i ∈N , x) =

{
Πm−1
i ((

p̂i ,0
1−p̂i ,m , . . . ,

p̂i ,m−1
1−p̂i ,m ))i ∈N , x) if p̂i ,m < 1

Πm−1
i ((( 1

m−1 , . . . ,
1

m−1 ))i ∈N , x) if p̂i ,m = 1
for x ∈ {0, . . . ,m − 1}

Λi ((p̂i )i ∈N ,m) = 0.

We now prove that Πm inherits the relevant properties of Π2 and Πm−1. By induction onm, the
base casem = 1 being trivial.
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Properness
Suppose that Π1 is weakly proper ⟨strictly proper⟩. By inductive hypothesis, so is Πm−1. We show
that then Πm is weakly proper ⟨strictly proper⟩. Let i be some agent with belief pi . Fix some reports
p̂j for all j , i . Suppose for a contradiction that there exists p̂i such that

E[Πm, pi , p̂i ] > E[Π
m, pi , pi ] (4)

⟨such that p̂i , pi and (4) holds with weak inequality⟩.
Note that

E[Γ, pi , p̂i ] = E[Π
1, (1 − pi ,m,pi ,m), (1 − p̂i ,m, p̂i ,m)] (5)

Suppose first that pi ,m = 1. Then E[Πm, pi , p̂i ] = E[Γ, pi , p̂i ], because Λ pays out 0 in the event
X =m. Then by our assumption about p̂i and by (5), we have that

E[Π1, (0, 1), (1 − p̂i ,m, p̂i ,m)] > E[Π
1, (0, 1), (0, 1)], (6)

contradicting that Π1 is weakly proper. ⟨Since p̂i , pi , we have p̂i ,m < 1. From (4) with weak
inequality, we get (6) with weak inequality, which contradicts that Π1 is strictly proper.⟩
Suppose next that pi ,m < 1. Note that E[Πm, pi , p̂i ] = E[Γ, pi , p̂i ] + E[Λ, pi , p̂i ]. Because Π1 is

weakly proper, and from (5), we get

E[Γ, pi , p̂i ] ≤ E[Γ, pi , pi ]. (7)

But we assumed that E[Πm, pi , p̂i ] > E[Π
m, pi , pi ]. Hence

E[Λ, pi , p̂i ] > E[Λ, pi , pi ]. (8)

⟨From (4) with weak inequality, we get (8) with weak inequality.⟩
• Assume that p̂i ,m = 1. Then (8) means that

(1 − pi ,m)E[Π
m−1, (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m ), ( 1

m−1 , . . . ,
1

m−1 )]

> (1 − pi ,m)E[Π
m−1, (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m ), (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m )].

This contradicts that Πm−1 is weakly proper. ⟨The weak inequality contradicts that Πm−1

is strictly proper, unless pi ,y
1−pi ,m =

1
m−1 for all y = 0, . . . ,m − 1. In this case, the above

inequality holds with equality, but (7) holds with strict inequality (since p̂i ,m = 1 , 0 = pi ,m ),
contradicting our initial assumption.⟩

• Assume that p̂i ,m < 1. Then (8) means that

(1 − pi ,m)E[Π
m−1, (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m ), (

p̂i ,0
1−p̂i ,m , . . . ,

p̂i ,m−1
1−p̂i ,m )]

> (1 − pi ,m)E[Π
m−1, (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m ), (

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m )].

Again, this contradicts that Πm−1 is weakly proper. ⟨The weak inequality contradicts that
Πm−1 is strictly proper, unless pi ,y

1−pi ,m =
p̂i ,y

1−p̂i ,m for all y = 0, . . . ,m − 1. In this case, the above
inequality holds with equality, but (7) holds with strict inequality (since p̂i ,m , pi ,m by the
assumption that p̂i , pi ), contradicting our initial assumption.⟩

Since all cases lead to contradiction, Πm is weakly proper.
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Arbitrage-Freeness
Suppose that Π1 is arbitrage-free. By inductive hypothesis, so is Πm−1. We show that then Πm is
also arbitrage-free. Suppose that there is a coalition C ⊆ N and vectors (qi )i ∈N and (ri )i ∈N with
qi = ri for all i < C for which∑

i ∈C

Πm
i ((qj )j ∈N , x) ≥

∑
i ∈C

Πm
i ((rj )j ∈N , x) for all x . (9)

We show that none of these inequalities can be strict. Evaluating (9) with x =m, we get∑
i ∈C Π1

i (((1 − qj ,m,qj ,m))j ∈N , 1)
≥

∑
i ∈C Π1

i (((1 − r j ,m, r j ,m))j ∈N , 1).
(10)

Since Π1 is arbitrage-free, we have∑
i ∈C Π1

i (((1 − qj ,m,qj ,m))j ∈N , 0)
≤

∑
i ∈C Π1

i (((1 − r j ,m, r j ,m))j ∈N , 0).
(11)

For a probability distribution p, write

p̃ =

{
(

pi ,0
1−pi ,m , . . . ,

pi ,m−1
1−pi ,m ) if pi ,m < 1

( 1
m−1 , . . . ,

1
m−1 ) if pi ,m = 1

With this notation, we have that Λ((qi )i ∈N , x) = Πm−1((q̃i )i ∈N , x) for x ∈ {0, . . . ,m− 1}. From (11),
when evaluating (9) for each x ∈ {0, . . . ,m − 1}, we get∑

i ∈C Πm−1
i ((q̃j )j ∈N , x)

≥
∑

i ∈C Πm−1
i ((r̃j )j ∈N , x).

(12)

If any of them − 1 inequalities (12) was strict, then we have found that Πm−1 admits arbitrage, a
contradiction. Hence they all hold with equality. Hence, for x = 0, . . . ,m − 1, (9) must hold with
equality by (11), and also (11) must hold with equality. Then, because (11) holds with equality, (10)
must also hold with equality, since otherwise Π1 admits arbitrage. Since (10) holds with equality,
(12) holds with equality for x = m. Thus, we have shown that allm inequalities (12) hold with
equality, as desired.

Bounded Reports
Suppose Πm is evaluated on a profile of reports (p̂i )i ∈N such that p̂i , j ≥ ϵ for all i ∈ N and all
j ∈ {0, . . . ,m}. Then, inspecting the definition of Πm and of Λ, we see that Πm evaluates the
function Πm−1 with reports where each probability is at least ϵ/(1 − ϵ). In turn Πm−1 evaluates
Πm−2 with reports where each probability is at least

ϵ
1−ϵ

1 − ϵ
1−ϵ
=

ϵ

(1 − ϵ) (1−ϵ )−ϵ1−ϵ

=
ϵ

1 − 2ϵ .

Continuing in this way, we see that when Πm−r is evaluated, all its input probabilities are at least
ϵ/(1 − rϵ). In particular Π1 is evaluated with probabilities all at least ϵ/(1 − (m − 1)ϵ). (Note that in
the present formalism, we need not impose an upper bound on a report for binary mechanisms,
because we impose a lower bound on both p̂i ,0 and p̂i ,1 = 1 − p̂i ,0.)
Now take Π1 to be a mechanism from the family Mk with k chosen large enough so that Mk

does not admit arbitrage when probability reports are bounded to be at least ϵ/(1 − (m − 1)ϵ).
Then, following our inductive argument, we see that Πm does not admit arbitrage when probability
reports are bounded to be at least ϵ .
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