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Suppose we wish to learn people’s preferences using an election (possibly in an 
Internet setting). What challenges do we face in attempting to obtain accurate 
results? 
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Currently, there’s quite a bit of literature on preventing misreporting of preferences – 
that is, I actually prefer A to B to C, but I report that I prefer B to C to A, for instance. 
Of course, the Gibbard-Satterthwaite Theorem shows that we cannot prevent 
misreporting in general, but we may be able to prevent it in certain settings. So we 
can only ask questions about which customers generally have single-peaked 
preferences, for instance. We might also try use a voting rule for which finding a 
manipulation is computationally hard. 
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But even if people are reporting true preferences, they might be reporting them 
multiple times. False-name manipulation is the creation of false identities in order to 
cast multiple votes. 
Traditionally in voting, we assume that each agent participates exactly once. If we 
allow people to participate any number of times, we get an extremely negative result 
(the best we can do is the unanimity rule). Other prior work identifies assumptions 
we can make that allow us to recover false-name-proof voting mechanisms. 
The problem is that, in general, we may find these assumptions too restrictive for a 
common voting setting. 
But moreover, perhaps their goal is also too restrictive: We don’t necessarily require 
false-name-proof rules, we just want to get the correct answer with high probability. 
And we think that perhaps we can do that if we just resist or limit false-name 
manipulations. 
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So in real elections, we tend to use false-name limiting methods such as CAPTCHAs, 
allowing only one vote per IP address, or so on. But these are false-name-limiting, not 
false-name-proof, methods. 
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How can we study these methods theoretically? 
Suppose that we can go out and run experiments to determine the effects of these 
false-name-limiting methods. Specifically, we try to discover how many false-name 
votes are being cast depending on the method used. For example, say hypothetically 
that, for method one, 10 percent of people who visit the page end up not bothering 
to vote at all; perhaps 50 percent choose to cast exactly one vote, and 25 percent 
cast exactly two votes, and so on. Then they come back to you with charts that look 
something like this. 
So suppose we find out that, with a CAPTCHA, 10% of people don’t bother to vote at 
all, 50% cast exactly one vote, and some people come back and cast 2 votes, 3 votes, 
etc. 
More stringent methods might mean fewer people cast extra votes, but might also 
mean fewer people bother to vote at all. But now, we can figure out a theoretical 
handle on this problem.  
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First, we’re going to assume that these individual vote distributions are inputs into 
our model. (Suppose for example that someone else has done the research or 
modeling to determine, for certain false-name-limiting method like CAPTCHAs or 
email registration, what the individual vote distribution looks like.) Furthermore, we’ll 
assume that voters draw their number of votes i.i.d. from this distribution.  
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We’re interested in nonstrategic voting settings: no matter how many false identities I 
use, I should always vote for the same alternative. So we’ve considered this in the 
case of single-peaked-preferences, and we present it here for the case of two 
alternatives. 
Model: We have n_A supporters of alternative A and n_B of B. They draw votes i.i.d. 
according to the individual vote distribution for our chosen method, producing some 
number of total votes for each alternative. We’ll let V_A and V_B be random variables 
for these total numbers of votes, and v_a-hat and v_b-hat are the actually observed 
numbers of votes. 
We’ll ask two questions. The first is, given a certain number of supporters of each 
alternative, which false-name-limiting method should we choose so that we get a 
“good” outcome? The second is, if we observe a certain outcome, how can we 
evaluate whether it is “good”; whether we can be confident that it reflects underlying 
preferences? 
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OK, we’re now ready to address the first big question: How do we select among 
different false-name limiting methods?  
It seems clear that we want to select a method that doesn’t allow people to vote too 
many times, but I want to quickly convince you that the choice is not obvious in 
general. So here’s a real-life example. This is the individual vote distribution for the US 
Congressional elections in 2010. 41.7% of the eligible voters cast a vote, and 58.3% 
did not. (Source: http://elections.gmu.edu/Turnout_2010G.html) 
Notice that we had a quite restrictive false-name-limiting method in place here. 
Registering to vote is somewhat time consuming, requires identification, and so on, 
and then to actually vote you need to take time off of work or whatever during the 
day, transport yourself to a polling station, wait in line, and cast your vote. 
OK, so what’s the alternative? Well, say I proposed that Americans vote online. We 
can speculate that we’d get a much higher voter turnout rate, but critics would worry 
that people would manage to cheat the system and vote multiple times (imitating 
someone else, for instance). You might even get a tiny fraction of people who 
manage to steal people’s identities and cast, say, 1000 votes. So perhaps the 
individual vote distribution would look like this. 
Where we have a lot more people participating, but also some cheaters, and maybe 
some really serious cheaters. And even if you have hard numbers, it’s not really clear 
a priori which of these distributions is more likely to select an alternative that is 
actually preferred by the most people. 
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OK, suppose we will run an election in which more voters support alternative A. We 
want to know which is better: method 1, which has this individual vote distribution; 
or method 2, which has this. We can compute probability of a “correct” outcome 
under each distribution. (Correct just means that A gets more votes than B.) 
And the question is, which is better? Well, this is easy for any given supporter profile. 
If I tell you there are 10 supporters of A and 8 supporters of B, and give you two 
distributions, you can run this calculation and it’s no problem. But how do we 
compare two distributions in general? 
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We show how to compare these probabilities of correctness as the size of the 
elections grows large. 
So we’ll have these supporter profiles where n_A people prefer alternative A and n_B 
prefer B, and we’ll take a sequence of these profiles that get larger and larger – more 
and more people. We’re going to suppose that more people prefer A than B. So as we 
make the election larger, A should be preferred by a few more people. And as we 
make it even larger, A should be preferred by a few more people. And we just need a 
few reasonable bounds on this growth. 
First, we’ll want these elections to be reasonably close. So if n is the total number of 
supporters – n_A plus n_B – then the margin of victory should grow no faster than 
square root of n. If the margin of victory is growing faster than that, then in some 
sense we expect any false-name-limiting method to work, because alternative A will 
have so many more supporters. 
But second, we do still need there to be some margin of victory. If the margin of 
victory is staying constant as the number of supporters diverges – say A always wins 
by 10 votes as the number of voters goes to infinity – we think of that as a somewhat 
pathological case, and in elections that are this close, we can’t really say which 
method is better because both of them are going to give about a 50-50 chance that 
you get the right answer. (Because about half the people will prefer A and half will 
prefer B.) 
So assuming these conditions are satisfied, we have the following theorem. 
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Let’s suppose that method one has a higher mean over standard deviation than 
method two. Then for sufficiently large elections, method one is always more likely to 
produce a correct outcome. 
So what this result shows is that, if we have an individual vote distribution, what 
really matters is the ratio of the mean to standard deviation. So we want people on 
average to cast a lot of votes each, but we want everyone to be casting about the 
same number of votes, and this ratio tells us exactly how to trade off those 
characteristics. 
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The proof is a little tedious, but the intuition is very straightforward. First, the 
distributions of the number of votes cast approach Gaussians, and we can use a 
Berry-Esseen bound to find out how quickly they approach Gaussian distributions. 
 So we know that the probability that an election outcome is correct, which by 
assumption is the chance that A gets more votes than B, approaches the standard 
normal distribution of this value. So the picture looks like this: 
Here’s the approximate probability of a correct outcome under method 2, and here 
under method 1. And as long as the election is reasonably close, then when n is large 
enough, this difference is large enough to ensure that method 1 always gives a higher 
chance of correctness. 
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So the takeaway is that, it seems we should prefer methods with a high “signal-to-
noise” ratio. And possibly this could inspire new methods, because current methods 
seem focused on pushing everything down – both mean and standard deviation. But 
this shows that we can do better if we can actually increase the mean without 
increasing the standard deviation too much. 
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OK, so suppose we select some particular false-name-limiting method and we run our 
election. All we observe is the number of votes cast. So now we have the inverse 
problem – given the outcome, how likely is it to be correct? 
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So we’ve used a particular false-name limiting method to run an election, and we’ve 
observed a certain number of votes for A, and a certain number for B. Suppose A got 
more votes; how sure can we be that more people actually prefer A? 
We could take a Bayesian approach to the question. We have a joint prior on the 
parameters, we observe some evidence, and obtain a posterior over how many 
people support each alternative. We still wouldn’t be done – we’d have to compute 
the probability that A has more supporters than B, and determine some significance 
level above which we accept the election results and below which we say the election 
is inconclusive. 
We didn’t like this approach for several reasons. First, a prior doesn’t seem to help 
unless we actually have prior information. In general, this information may be costly 
to obtain or impossibly to obtain. Second, in many settings we might value fairness. 
So we don’t want any possibility of manipulating the outcome. Even if we require that 
the prior be neutral between A and B, it might still be biased towards, say, close 
elections, with effects on the confidence we later compute in the outcome. And there 
doesn’t seem to be a standard “neutral” or “fair” prior that we can use in this setting. 
So we decided to use statistical hypothesis testing. So now I’ll briefly explain this 
approach in general, and show how we applied it. 
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Generic statistical hypothesis testing: 
-observe an outcome – in our case, the number of votes received by A and by B 
-assume A gets more votes than B 
-we use this to compute a test statistic beta hat. We’ll try to figure out exactly how 
later, but we think of it as a number describing how much A won by, in some sense. 
-we draw a conclusion from this observed outcome, and here the conclusion to be 
drawn is that there were more supporters of A than of B 
-Problem: What if this outcome or effect was just due to chance, not to a difference 
in parameters? 
-formulate a null hypothesis: suppose that actually, it was neutral between A and B 
and the effect was just due to chance 
-Question: then what is the probability that we observe an outcome as or more 
extreme than what we did see? (This is the p-value.) 
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If p-value is above some threshold, like .05, then we think it’s actually likely that we 
observe beta hat under the null hypothesis, so we must accept the null hypothesis – 
that our results may be due to chance. And that means we can’t confidently draw this 
conclusion that A has more supporters. 
If p-value is below the threshold, then it’s unlikely to observe beta hat under the null 
hypothesis, so we reject the null hypothesis and we can confidently draw this 
conclusion. 
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Complication: We actually have many null hypotheses – it could be that A and B each 
have one supporter, or each have 2, or so on. 
Solution: we start by computing a p-value for each one 
-Suppose that all the p-values are below our threshold 
-Then the max-p-value is below the threshold 
-Then definitely reject null hypothesis – unlikely in all circumstances. 
Conversely, suppose all p-values are above the threshold 
-Then the min-p value is above the threshold 
-Then definitely accept null hypothesis – likely in all circumstances. 
But, we have to worry about when it’s unclear whether to accept or reject. We’ll try 
to pick a test statistic that minimizes the chances of this happening and always falls 
into one of those categories. 
There’s a second complication. In our case, we only observe one data point – one 
election. Most statistical tests, as far as we know, tend to assume or require more 
data than that (for example, so we can compute a sample variance). So we don’t 
know of a statistical test that really applies to this setting. Instead, we’ll propose our 
own, which will have similarities with common tests. 
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So this is our statistical hypothesis test. 
Select some significance or “threshold” level R. 
Observe the outcome of the election. 
Compute a test statistic. 
If the max p-value over all n_A equal to n_ B is below the threshold, reject the null 
hypothesis. We can confidently conclude that the more people support A than B. 
If the min p-value is above the threshold, don’t reject the null hypothesis. We cannot 
be confident that our outcome is correct. 
If neither of those happens, our test is inconclusive. 
So now we’ll show what test to use to compute beta-hat. 
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So here’s an example. We have some unknown numbers of supporters who cast votes 
according to some distribution pi, and we observe 92 votes for A and 80 votes for B. 
Now we have to compute a test statistic and calculate our p-values. 
Suppose we just take the difference in votes. So we say that A’s margin of victory is 
12. 
We’ll compute a test statistic called A’s adjusted margin of victory. So what should it 
be? 
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One natural choice is to just use the margin of victory and take the difference in 
votes. 
Another is to take the percent of votes that A won by, so 12 votes out of the 172 that 
were cast. 
We’ll consider the general form of both of these rules, which is where the winning 
margin is scaled by some power of the number of votes cast. In the difference rule, 
alpha is zero; in the percent rule, alpha is one. 
And the question to answer, then, is what value of alpha gives a good test, if any. 
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Here, we see which values won’t work. Suppose our adjusted margin of victory is the 
difference in votes, scaled by some power of the total number of votes. Notice that 
the difference rule is alpha equals zero, and the percent rule is alpha equals 1. We say 
that small values of alpha are always susceptible to Type II errors, where we ought to 
reject the null hypothesis and conclude that our election outcome is correct, but we 
don’t. Similarly, large values of alpha are susceptible to Type I errors, where we 
shouldn’t reject, but we do and run the risk of erroneously concluding that our 
election outcome is correct. 
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Here, we’re plotting p-values for a particular election outcome using different 
adjusted margin of victory formulae. So first, let’s look at a small alpha, the asterisks. 
Here we see that, as n is increasing, the p-value is going to one-half. So we can set 
any significance level we want – pick any R between zero and 0.5 – and we will still 
accept the null hypothesis at some point. 
Similarly, for large alpha, the circles, we can see that, even for a very stringent R-value 
– like .001 – we will eventually reject the null hypothesis. 
But when alpha is one-half, we always get about the same value, which we kind of 
think of as the “right” p-value.  

28 



This is just the positive result that corresponds to the previous theorem. When we 
select alpha = 0.5, then if we observe a big enough margin of victory, we will reject 
the null hypothesis, for all values of n, and conclude that our outcome is good. 
Conversely, if we observe a small enough margin of victory, then we will not reject 
the null hypothesis for any value of n, and so we can certainly conclude that the 
margin of victory is not significant. 
This holds for any significance level R between zero and 0.5. 
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And we think, due to simulation results, that this test actually gives a result very often 
– that it’s actually quite rare to be inconclusive. This image gives the intuition: 
Usually, we think from simulations that these max-p and min-p values are very close 
together, which means that, for a given significance level, we probably can tell 
whether to accept or reject. 
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Here’s another example (again, for a particular false-name-limiting method). This 
graph tells us the min-p and max-p values you’ll get for a given outcome beta-hat. So 
if we look at a significance level, it’s only for a small range that beta-hat will be 
inconclusive. Usually, the min-p will be above the significance, or the max-p will be 
below. 
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Recap of this section’s results. 
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So the key assumptions we made were to take the individual vote distribution as 
given, and to assume votes were drawn iid. We used our model to address two key 
questions. 
The first major question is how to design such elections. In our setting, the answer is 
that, as elections grow large, all that really matters is the “signal-to-noise” ratio – 
mean over standard deviation. 
The second major question is how to evaluate the outcome of an election – how do 
we know whether to rely on the results. And in our setting, we proposed this 
statistical significance test where we scale the margin of victory by one over the 
square root of the number of total votes, and show that this gives us the right kind of 
test. 
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So for future work. One thing we have done is extend these results to single-peaked 
preference domains.  
An obvious step is to see if we can apply these findings in real-world elections, 
especially online elections. Ideally, we should be able to use these insights to design 
better false-name-limiting methods and to better understand the tradeoffs involved 
when we do something like require email registration to vote. So we’d like to apply 
these results and even verify them on datasets if we can. 
Another question is whether we can weaken some assumptions in our model, or 
whether there are other models that can be proposed to answer this same question. 
And possibly the most interesting direction is to ask, how do we actually get these 
individual vote distributions? One way is to look at methods like CAPTCHAs 
experimentally and try to empirically produce them. Another is to develop an agent 
model for utilities on each outcome, and model false-name-limiting methods as 
imposing costs on casting each vote. 
Thanks! 
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