Designing Markets for Daily Deals

Yang Cai (Berkeley/McGill) Mohammad Mahdian (Google) Aranyak Mehta (Google) **Bo Waggoner** (Harvard)

WINE 2013

Motivation: Daily Deals

Problem statement

Problem statement

Drawing not to scale

Task: design an *auction* to pick deals Twist: care about *users'* welfare Challenge: merchants know value to users; platform may not

Outline

- 1. Really simple model for daily deals, results
- 2. Really general model, characterization
- 3. Applications and conclusion

Goals of talk: (a) state/solve daily deals problem (b) general auction takeaways

Outline

1. Really simple model for daily deals, results

2. Really general model, characterization

3. Applications and conclusion

Goals of talk: (a) state/solve daily deals problem (b) general auction takeaways

Really Simple Model

- One winning deal
- One user

Prologue: Standard auction setting

Simple model for daily deals

Simple model for daily deals

User welfare is related to p_i
First try: require p_i to exceed "quality" threshold

Simple model for daily deals

- User welfare is related to p_i
- First try: require p_i to exceed "quality" threshold
- **Fails!** (cannot even get constant factor of v_i)

Maximizing total welfare

- User welfare is related to p_i
- Model relationship by a function $g(p_i)$
- Goal: maximize v_i + g(p_i)

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

What does convex mean? Example: p = 0 on first day, p = 1 on second day is preferred to p = 0.5 on both days

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

Constructing the auction Key idea: p_i = **prediction**

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

Constructing the auction Key idea: p_i = prediction

Scoring rule: Score(prediction, outcome). **Proper:** truthful prediction maximizes expected score.

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

- 1. Sort by $v_i + g(p_i)$ from highest to lowest.
- 2. Pick bidder 1.
- 3. Bidder 1 pays platform: $v_2 + g(p_2)$
- 4. Platform pays bidder 1: $\tilde{Score}(p_1, outcome)$

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

Lemma (Savage '71). For all convex g(p), there exists a proper scoring rule with expected score g(p) for truthfully reporting p.

Theorem 1. g(p) is **convex** \Leftrightarrow there exists a deterministic, truthful auction maximizing $v_i + g(p_i)$.

- 1. Sort by $v_i + g(p_i)$ from highest to lowest. 2. Pick bidder 1.
- 3. Bidder 1 pays platform: $v_2 + g(p_2)$
- 4. Platform pays bidder 1: $\tilde{Score}(p_1, outcome)$

E[utility for winning] = $v_1 + g(p_1) - (v_2 + g(p_2))$

Outline

1. Really simple model for daily deals, results

2. Really general model, characterization

3. Applications and conclusion

"Really General Model"

Example: "full" daily deals.

"Really General Model"

Example: "full" daily deals.

Q: For what externality functions *g* can we truthfully max welfare?

Theorem 2. $g_A(p_1(A),...)$ are **convex** in each argument \Leftrightarrow we can maximize welfare = $g_A(p_1(A),...) + sum_i v_i(A)$.

Q: For what externality functions *g* can we truthfully max welfare?

Theorem 2. $g_A(p_1(A),...)$ are **convex** in each argument \Leftrightarrow we can maximize welfare = $g_A(p_1(A),...) + sum_i v_i(A)$.

Auction: VCG and carefully constructed scoring rules.

Outline

1. Really simple model for daily deals, results

2. Really general model, characterization

3. Applications and conclusion

Application of Characterization: Network Problems

• Each edge has:

- $\circ \operatorname{cost} V_i$
- \circ stochastic delay ~ p_i
- Utility of traveler: $g(p_1, ..., p_m)$ for path 1...m
- Goal: maximize total welfare

General takeaways

- Welfare includes **externality** on
- ... depending on private **predictions** of bidders
- Implementable ⇔ externality is convex function of prediction
- Auction = VCG + "decomposed" scoring rules

Bidders

Auctioneer

Third party

Future work

- Practicality
- Assumptions to avoid negative results
- Applications
- Revenue maximization
- Explore: convexity, implementable allocation functions, and implementable objective functions. c.f. Frongillo and Kash, General Truthfulness Characterizations via Convex Analysis

Extension: Principal-agent problems

- Each worker has a set of efforts, each with:
 - o cost
 - stochastic quality
- Externality: observed quality of work
- Goal: maximize total welfare