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Motivation: Daily Deals



Problem statement

Merchants Platform

“deals” (e.g. coupons)

Drawing not to scale

Users

may “click” on deals
single page/email
selected at beginning of day
and shown to all users



Problem statement

Merchants Platform

Drawing not to scale

Users

Task: design an auction to pick deals
Twist: care about users’ welfare
Challenge: merchants know value to users; platform may not
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Really Simple Model

● One winning deal
● One user

Merchants Platform User



Prologue: Standard auction setting

Merchants Platform

v1

v1

v3

v2

User

vi = value for winning



Simple model for daily deals

Merchants Platform

v1 , p1
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vi = value for winning
pi = probability of click
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vi = value for winning
pi = probability of click

● User welfare is related to pi
● First try: require pi to exceed “quality” threshold



Simple model for daily deals

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

vi = value for winning
pi = probability of click

● User welfare is related to pi
● First try: require pi to exceed “quality” threshold
● Fails! (cannot even get constant factor of vi )



Maximizing total welfare

Merchants Platform

v1 , p1

v1 , p1

v3 , p3

v2 , p2

User

● User welfare is related to pi
● Model relationship by a function g(pi )
● Goal: maximize vi + g(pi )

welfare = g(pi )vi = value for winning
pi = probability of click



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .

What does convex mean?
Example: p = 0 on first day, p = 1 on second day
is preferred to p = 0.5 on both days

g(p)

p 1



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Constructing the auction
Key idea: pi = prediction

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Scoring rule: Score(prediction, outcome).
Proper: truthful prediction maximizes expected score.

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .

Constructing the auction
Key idea: pi = prediction



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .

1. Sort by  vi + g(pi ) from highest to lowest.
2. Pick bidder 1.
3. Bidder 1 pays platform: v2 + g(p2 )
4. Platform pays bidder 1: Score(p1 , outcome)



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Lemma (Savage ’71). For all convex g(p), there exists a 
proper scoring rule with expected score g(p) for truthfully 
reporting p.

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .



Q: For what user welfare functions g
(p) can we truthfully max welfare?

Theorem 1. g(p) is convex ⇔ there exists a 
deterministic, truthful auction maximizing 

vi + g(pi ) .

1. Sort by  vi + g(pi ) from highest to lowest.
2. Pick bidder 1.
3. Bidder 1 pays platform: v2 + g(p2 )
4. Platform pays bidder 1: Score(p1 , outcome)

E[utility for winning] = v1 + g(p1)   -   (v2 + g(p2))
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Takeaways from simple model

Bidders Auctioneer

Third party

externality on 

max welfare, including 
externality on
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Third party

max welfare, including 
externality on

Implementable ⇔ externality is 
convex function of prediction



  prediction/
  belief about

Takeaways from simple model

Bidders Auctioneer

Third party

max welfare, including 
externality on

Auction:
2nd price and “decomposed” 
proper scoring rule



“Really General Model”
Example: “full” daily deals.

vi(A1)

vi(A2)

vi(A3)

Choices of 
mechanism

A1

A2

A3

pi(A2)

Beliefs conditioned 
on choice

Outcomes

$$$$

$$$
$$

$



“Really General Model”
Example: “full” daily deals.

vi(A1)

vi(A2)

vi(A3)

Choices of 
mechanism

A1

A2

A3

pi(A2)

Beliefs conditioned 
on choice

Outcomes

$$$$

$$$
$$

$Externality: gA2(p1(A2), …, pn
(A2)) 



Q: For what externality functions g 
can we truthfully max welfare?

$$$$
$$$
$$
$

Theorem 2.
gA(p1(A),...) are convex in each argument ⇔ we 
can maximize welfare = gA(p1(A),...) + sumi vi(A).



Q: For what externality functions g 
can we truthfully max welfare?

$$$$
$$$
$$
$

Auction: VCG and carefully constructed scoring rules.

Theorem 2.
gA(p1(A),...) are convex in each argument ⇔ we 
can maximize welfare = gA(p1(A),...) + sumi vi(A).
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Application of Characterization: 
Network Problems

● Each edge has:
○ cost vi
○ stochastic delay ~ pi

● Utility of traveler: g(p1, …, pm ) for path 1…m
● Goal: maximize total welfare

s t



General takeaways

Bidders Auctioneer

Third party

● Welfare includes externality on
● … depending on private predictions of bidders
● Implementable ⇔ externality is convex function of 

prediction
● Auction = VCG + “decomposed” scoring rules



Future work

● Practicality
● Assumptions to avoid negative results
● Applications
● Revenue maximization

● Explore: convexity, implementable allocation functions, 
and implementable objective functions.  c.f. Frongillo and 
Kash, General Truthfulness Characterizations via Convex Analysis

$$$$
$$$
$$
$



Extension: Principal-agent problems
● Each worker has a set of efforts, each with:

○ cost
○ stochastic quality

● Externality: observed quality of work
● Goal: maximize total welfare


