Information Elicitation Sans Verification

Bo Waggoner and Yiling Chen

2013-06-16

(a)

Motivation: human computation

Motivation: human computation

Motivation: human computation

Goal: design systems for eliciting info

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: design systems for eliciting info

Question: How to construct human computation systems?

Goal: design systems for eliciting info

Question: How to construct human computation systems? **Approach**: Use *mechanism design*

Mechanism design:

Construct a game to optimize an objective

Mechanism design:

Construct a game to optimize an objective

Game: different actions available; set of actions maps to an outcome and payoffs.

Mechanism design:

Construct a game to optimize an objective

Mechanism design:

Construct a game to optimize an objective

Our objective: elicit "useful" information

Mechanism design:

Construct a game to optimize an objective

Our objective: elicit "useful" information

Our constraints:

Mechanism design:

Construct a game to optimize an objective

Our objective: elicit "useful" information

Our constraints:

players may not prefer "useful" responses

Mechanism design:

Construct a game to optimize an objective

Our objective: elicit "useful" information

Our constraints:

- players may not prefer "useful" responses
- esigner cannot always verify responses

Mechanism design:

Construct a game to optimize an objective

Our objective: elicit "useful" information

Our constraints:

- players may not prefer "useful" responses
- esigner cannot always verify responses

Our name for this setting: Information Elicitation Without Verification (IEWV)

Agenda

Plan:

 Formally define the setting, identify limitations of prior work.

Agenda

Plan:

- Formally define the setting, identify limitations of prior work.
- Prove impossibility results on the setting; demonstrate difficulty of overcoming limitations.

Agenda

Plan:

- Formally define the setting, identify limitations of prior work.
- Prove impossibility results on the setting; demonstrate difficulty of overcoming limitations.
- Propose new mechanism that overcomes some limitations, avoids some impossibilities.

Information elicitation without verification

Formal setting and prior work

Impossibility results for IEWV

Output agreement mechanisms

Information elicitation without verification

Formal setting and prior work

Impossibility results for IEWV

Output agreement mechanisms

Game of information elicitation without verification:

prior

Setting

Setting

Setting

• Peer prediction (Miller, Resnick, Zeckhauser 2005)

- Peer prediction (Miller, Resnick, Zeckhauser 2005)
- Bayesian truth serum (Prelec 2004)

- Peer prediction (Miller, Resnick, Zeckhauser 2005)
- Bayesian truth serum (Prelec 2004)
- PP without a common prior, Robust BTS

(Witkowski, Parkes 2012a,b)

- Peer prediction (Miller, Resnick, Zeckhauser 2005)
- Bayesian truth serum (Prelec 2004)
- PP without a common prior, Robust BTS

(Witkowski, Parkes 2012a,b)

• Collective revelation (Goel, Reeves, Pennock 2009) Truthful surveys (Lambert, Shoham 2008)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

observation

observation

report

Prior work: discussion

Prior work: discussion

Limitations of mechanisms in prior work:

• Somewhat complicated to explain

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist
- Not detail-free (peer prediction)

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist
- Not detail-free (peer prediction)
- Restricted domain (all)

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist
- Not detail-free (peer prediction)
- Restricted domain (all)

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist
- Not detail-free (peer prediction)
- Restricted domain (all)
- Goal: Overcome these limitations.

- Somewhat complicated to explain
- Only applicable in specific settings (*e.g.* elicit signals)
- "Bad" equilibria exist
- Not detail-free (peer prediction)
- Restricted domain (all)

Goal: Overcome these limitations. **Obstacle**: Impossibility results!

Information elicitation without verification

Formal setting and prior work

Impossibility results for IEWV

Output agreement mechanisms

Definition

A strategy is **uninformative** if it draws a report from the same distribution in every state of the world.

Proposition

The following mechanisms for IEWV always have uninformative equilibria:

- Those with compact action spaces and continuous reward functions;
- Those that: (a) are detail-free and (b) always have an equilibrium.

Proposition

The following mechanisms for IEWV always have uninformative equilibria:

- Those with compact action spaces and continuous reward functions;
- Those that: (a) are detail-free and (b) always have an equilibrium.

⇒ All mechanisms we know of; all "reasonable" mechanisms.

Q: What is "truthful"?

Q: What is "truthful"?

A: define a **query** T specifying the truthful response for a given posterior belief.

Q: What is "truthful"?

A: define a **query** T specifying the truthful response for a given posterior belief.

truthful strategy: $s_i(\Pi_i(\omega^*)) = T(\Pi_i(\omega^*)).$

Q: What is "truthful"?

A: define a **query** T specifying the truthful response for a given posterior belief.

truthful strategy: $s_i(\Pi_i(\omega^*)) = T(\Pi_i(\omega^*))$. truthful equilibrium: (Given T) one in which each s_i is truthful.

Q: What is "truthful"?

A: define a **query** T specifying the truthful response for a given posterior belief.

truthful strategy: $s_i(\Pi_i(\omega^*)) = T(\Pi_i(\omega^*))$. truthful equilibrium: (Given T) one in which each s_i is truthful.

Theorem

For all detail-free M and all queries T, there exists \mathcal{I} such that $G = (M, \mathcal{I})$ has no strict truthful equilibrium.

Goal: overcome limitations of prior mechanisms.

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

Proposed solution: Output agreement mechanisms.

• simple to explain and implement

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

- simple to explain and implement
- applicable in variety of complex domains

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

- simple to explain and implement
- applicable in variety of complex domains
- detail-free

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

- simple to explain and implement
- applicable in variety of complex domains
- detail-free
- unrestricted domain

Goal: overcome limitations of prior mechanisms. Obstacle: Impossibility result!

- simple to explain and implement
- applicable in variety of complex domains
- detail-free
- unrestricted domain
- ... but not truthful!

Information elicitation without verification

Formal setting and prior work

Impossibility results for IEWV

Output agreement mechanisms

$\mathsf{Truthful} \to \textbf{common-knowledge truthful}:$

Π_1 : player 1's partition

 ω^* : true state selected by nature

 $\Pi_1(\omega^*)$: player 1's signal $\Pr[\omega \mid \Pi_1(\omega^*)]$: player 1's posterior

・ 同 ト ・ ヨ ト ・ ヨ ト

20 / 33

Truthful \rightarrow common-knowledge truthful: $s_i(\Pi_i(\omega^*)) = T(\Pi(\omega^*)).$ Previously: $= T(\Pi_i(\omega^*)).$

Output agreement: Origins

Output agreement: informally coined by von Ahn, Dabbish 2004.

Output agreement: Origins

Output agreement: informally coined by von Ahn, Dabbish 2004.

Game-theoretic analysis of ESP Game: Jain, Parkes 2008. (Specific agent model, not general output agreement framework.)

Output agreement: Origins

Output agreement: informally coined by von Ahn, Dabbish 2004.

Game-theoretic analysis of ESP Game: Jain, Parkes 2008. (Specific agent model, not general output agreement framework.)

Here: first general formalization of output agreement.

An output agreement mechanism:

An output agreement mechanism:

report space: A

An output agreement mechanism:

report space: (A, d)

イロン イヨン イヨン イヨン 三日

An output agreement mechanism:

Theorem

For any query T, there is an output agreement mechanism M eliciting a strict common-knowledge-truthful equilibrium.

Proof by picture

What is "focal" in output agreement?

When does inference, starting with truthfulness, converge to common-knowledge truthfulness?

When does inference, starting with truthfulness, converge to common-knowledge truthfulness?

• Eliciting the mean: Yes!

When does inference, starting with truthfulness, converge to common-knowledge truthfulness?

- Eliciting the mean: Yes!
- Eliciting the median, mode: No!

When does inference, starting with truthfulness, converge to common-knowledge truthfulness?

- Eliciting the mean: Yes!
- Eliciting the median, mode: No! (arbitrarily bad examples)

Mechanisms on many players?

Mechanisms on many players? (Yes)

Outline

Information elicitation without verification

Output agreement

• IEWV: formalized mechanism design setting.

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.
- Output agreement:

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.

イロト 不得下 イヨト イヨト 二日

30 / 33

- Output agreement:
 - simple

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.
- Output agreement:
 - simple
 - applicable in complex domains

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.
- Output agreement:
 - simple
 - applicable in complex domains
 - detail-free, unrestricted-domain

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.
- Output agreement:
 - simple
 - applicable in complex domains
 - detail-free, unrestricted-domain
 - elicits common knowledge

- IEWV: formalized mechanism design setting.
- (Almost) all mechanisms have bad equilibria.
- There are no detail-free, unrestricted-domain, *truthful* mechanisms.
- Output agreement:
 - simple
 - applicable in complex domains
 - detail-free, unrestricted-domain
 - elicits *common knowledge*

Thanks!