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Cl'ement gave me a lot of help, ideas, advice. We first started talking
about the problem due to a cstheory.stackexchange.com post.



Drawing Conclusions from Data
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Given i.i.d. samples from a
discrete distribution A,
what can you tell me about A?

This paper:
* Learning: Estimate A “accurately”

* Uniformity Testing:
Is A uniform or “far from” uniform?




Previously studied: ¢, distance

(equivalently: total variation distance):
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This work: ¢, distance, p =1
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This paper considers the same questions for general Ip metrics.

The functional form isn't important, main point is that:

- defined for allreal p >=1

- 11 is Manhattan distance

- 12 is Euclidean distance

- as we increase p, we put more emphasis on few “heavy” elements
- extreme case is linfinity which only measures largest difference



This work: ¢, distance, p =1
1

|A-Bll, =2, |4 =B,

|A-B]||, = max |A,—B,]|

i=1..n

Given n, e:

Learning: Output A such that |A—A|, <¢.

Uniformity testing: If A=U, output “unif”; if [A-U||,> ¢, “not”.
Both cases: Except with constant failure probability 6 (e.g. 1/3)
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Results 1421, = (3,14, -5
How many samples « Upper and lower bounds for
do | need? each ¢, metric.

* Matching up to constant
factors in most cases.

Unlike ¢; case:

» Exists a sufficient # of
samples independent of n

« Behavior differs in “small”
and “large” n regimes
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Why care about ¢,? "'~

Why Bo cares:
» | like the math/probability involved

+ Fundamental problems deserve elegant algorithms/proofs
(and small constants)
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Why care about ¢,? 4#h-{Z.a-ar
Why else you might care:

* Small data in a big world.

What if we do not have enough samples to draw confident ¢,
conclusions?

» (,testers/learners are often useful as subroutines
(Batu et al 2013, Diakonikolas et al 2015, ...)

ey

It will turn out that we can often draw Ip conclusions with far fewer
samples, especially over large distributions.
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What was known? 4 #h=Zala-ary
» Learning: order-optimal ¢, (folklore), O(%)

also ¢, and /.. €
* Uniformity testing: 0 @

€
- {7 order-optimal lower, and upper for “very big” n (Paninski 2008)

- Independently (Diakonikolas, Kane, Nikishkin 2015):
order-optimal ¢;, and ¢ for small-n regime

* Note: many cases “immediate” from prior work,
most (all?) cases probably “easy” to experts

* But hopefully when taken together, big picture insights emerge
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e Introductory stuff

[- Learning ]

» Uniformity testing

« Summary
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Learning

Emperor's new plot

no. of samples m
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Think of the epsilon tolerance as 0.01 or something. Now we'll think
about support size n in terms of powers of 1/epsilon. The question
is how many samples we need as n changes. Note the plot isin
log-log scale.
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Learning

— p=1
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support size n
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Starting point: known bounds look like this.
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Learning

For p >1: 1/é
Exists a sufficient # of
samples independent of n 1/
Behavior differs in
“small” and “large” n _
regimes 1/€5}

L/et

L/e't

no. of samples

1/

1/61’ L L L L L L =
1/ 1/eb 1/ 1/e 1/t 1/ 1/e8 1/¢

support size n i

Here's what bounds look like for learning, necessary and sufficient up
to constant factors, for 5 particular choices of Ip metric. Note Ip for
2 <= p <= infinity is always 1/eps”™2 samples.

In between 1 and 2, we have a small-n regime where the sample
complexity increases, then a large-n regime where it's constant.

Before we see what the bounds are, let's see the algorithm.



Learning Alg

1. Let Pr[i] <« # samples of i

|A-Bl|,=

> A -BF

1
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|A-Bl,=|>_,14; B,

Learning Alg

1. Let Pr[i] <« # samples of i

Analysis:
- Elegant “folklore” proof for 4 (thanks Clément!)

- Clément and | extended to general 4, and large-n cases

Theorem (in particular):

2 samples are sufficient to learn.
€

o=

-Forp=1,

-Forp = 2, %% samples are sufficient to learn.
€

15

There's no big-0 in the theorem - the constant is 1!
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Learning Alg

small-n regime:

large-n regime:
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It turns out the conjugate pairs, as in analysis, become important.
For p > 1, a key threshold is 1/eps™q.



1
P

||A_B||p = Zi:l |AI _Bi |p

Learning

For p >1: 1/é
Exists a sufficient # of
samples independent of n 1/
Behavior differs in
“small” and “large” n _
regimes 1/€5}

1/t

1/e't

no. of samples

Threshold: n= lq 1/e3t
€

1/¢

1/61’ L L L L L L =
1/ 1/eb 1/ 1/e 1/t 1/ 1/e8 1/¢

support size n .,

In general, for the small-n regime we have the bound shown (exact
form not important for this talk), and for the large-n regime the
bound is 1/eps”™q, which is interesting because the “threshold” for
large-n is 1/eps™q.
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« Summary
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Classic Coin Question

Coin: either fair or one side with e more probability.

Q: How many flips to tell?
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Classic Dice Question?

6-sided die: either fair or one side with e more probability.

Q: Do we need more trials than the coin, or fewer?

&7

| don't know of anyone who asked this question before.
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Classic Dice Question?

6-sided die: either fair or one side with e more probability.

Q: Do we need more trials than the coin, or fewer?

A: Fewer!
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Classic Dice Question?

6-sided die: either fair or one side with e more probability.

Q: Do we need more trials than the coin, or fewer?
A: Fewer!

samples

samples
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Intuition: With 2-sided coin, large variance in the counts of heads
and tails. Need more flips for the bias to “overwhelm” the
variance.

With 6-sided die, each side has smaller variance.



Classic Dice Question?

6-sided die: either fair or one side with e more probability.

Q: Do we need more trials than the coin, or fewer?
A: Fewer! (¢.,)

For ¢, need more.

In between? i
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That was an I-infinity question since we had one outlier coordinate.
On the other hand, for I-1 problems we need more samples.
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||A_B||p = Zi:l |AI _Bi |p

Testing, 1= p=< 2

1/6/\.5

1/etf

1/63.5 |

1/€'t

1/62'5’

no. of samples m

/8 1/t 1/ 1/é 1/t 1/ 1/ 1/
support size n
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For Ip uniformity testing with p=4/3, for every support size n,
theta(l/eps”™2) samples is necessary and sufficient (whether you
have a coin, or a die, or a lottery, or whatever). For p < 4/3,
increasing in n in small-n regime, then constant. For p > 4/3,
decreasing then constant.
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||A_B||p = Zi:l |AI _Bi |p

Testing Alg

Collision: pair of samples that are both of the same coordinate

Prior work counting collisions: Paninski (2008) (sort of); Goldreich and Don
(2000); Batu, Fortnow, Rubinfeld, and Smith (2005)
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Not the expected number of collisions when drawing m samples from
Ais

(m choose 2) ||A]|_272

= (m choose 2) ( ||U||_ 272 + ||A-U|| 272)

= (m choose 2) ( 1/n + [|A-U||_272).

So the |12 distance to uniformity directly controls the expected
number of samples.



|A-Bl,=|>_,14; B,

Testing Alg

1. Let C = # collisions
2. Pick threshold T

3. If C= T, output “uniform”; else, “not”.

Alg is optimal for all 1 = p < 2, all regimes! (by selecting
# samples and T appropriately)

Point: uniform distribution minimizes number of collisions.

1
P
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Testing Alg

|A-Bl|,=

> A -BF

1. Let C = # collisions
2. Pick threshold T

3. If C= T, output “uniform”; else, “not”.

Alg is optimal for all 1 = p < 2, all regimes! (by selecting
# samples and T appropriately)

Theorem (in particular):

1

o | ©

- For p = 2, max

-Forp=1, %if samples are sufficient to test uniformity.
€

91 ;
Jone ’ be samples suffice.

1
D
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Testing, 1= p =< 2
15 ‘
Threshold: n= iq /e — i —
¢ 1/et| — r=ila=H
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For small-n regime, bound isn't so important.
For large-n regime, it is sqrt(1/eps”™q), interesting because
n=1/eps”™q is the threshold.
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., Testi ng |A-B, =

> |A,-BF

no. of samples
—
=
o
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The blue line is the sample complexity for |2 testing; green is

linfinity. So it decreases more sharply and is then constant at
1/epsilon.
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- g
Theorem (for p = x):
-If 6 logn 5% (“small”), © IOLZH samples are necessary/sufficient.
n 1 1 . .
- If 9(1 >= (“large”), © samples are necessary/sufficient.
ogn € €
Note: e
* Still have “small” and “large” el
regimes, but log(n) gets involved

(Bounds still match at threshold)

no. of samples
—
=
o

1/c" 1/c 1/¢* 1/c 1/c! 1/c
support size n
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Actually I'm quite happy to have worked this out cleanly (tight
everywhere to constant factors). Note that at the threshold
between large and small n, the bounds match.
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Theorem (for p = x):
= sl (“small”), © log;,n samples are necessary/sufficient.
logn| ™~ ¢ ne
- If 9(1 o)1 (“large”), 9(*) samples are necessary/sufficient.
ogn € €
Note: e
* Still have “small” and “large” el
regimes, but log(n) gets involved

(Bounds still match at threshold)

g 1/€
Alg: &
« Small-n: look for “outlier” coordinate |2 1/.3}
* Large-n: “bucket” into n" groups and | Y/t

look for outlier bucket
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Here, n* is the “threshold” n, the value where Theta(n*/log(n*)) =
1/epsilon. So when n is large, no matter how large it is, group the
coordinates into n* groups and pretend it's the uniform distribution
on support n*,

The proof here is just chernoff bound on each coordinate (or bucket)

and union-bound over the coordinates (buckets). The cool thing is
it's tight to constant factors.
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lA-Bll,= |14, -B,
Gapfor2 < p< =12
* £, alg — sufficient 1/
4. bound — necessary —
/et —
* Gaponlyin <1/
small-n case g
g 1/€
« Seems to need 2 1t
different ideas
1/é
1/60-1*1/6“ l/‘el 1/‘52 1/63 1/64 1/e

support size n
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So the blue line is an upper bound, green is a lower bound, for every
Ip metric with 2 < p < infinity.
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Algorithms Summary

no. of samples m

Learning: naive alg is order-optimal everywhere

Uniformity testing: Collision Tester is order-optimal for 1 = p < 2

Uniformity testing for /... “almost-naive” alg is order-optimal

Learning
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ldeas Summary

For p >1:

no. of samples m

Exists a sufficient # of samples independent of n

Behavior differs in “small” and “large” n regimes

lq seems to upper-bound “apparent support size”

€
Learning Uniformity Testing
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Future Work 14=5l,=

» Close gap for uniformity testing, 2 < p < «, small n

» Strengthen “tightness” of lower bound for small-n learning, 1 = p< 2

» Test and learn “thin” distributions?
 Test and learn when n is not known?

» Test and learn for other “exotic” metrics? (Do Ba,
Nguyen, Nguyen, Rubinfeld 2011)

&
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By “thin”, | mean small I-infty norm (every coordinate has small
probability). Should definitely be easier to e.g. learn thin
distributions for at least some Ip metrics.
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Future Work IA=5l, =

» Close gap for uniformity testing, 2 < p < «, small n

» Strengthen “tightness” of lower bound for small-n learning, 1 = p< 2

 Test and learn “thin” distributions?
 Test and learn when n is not known?

» Test and learn for other “exotic” metrics? (Do Ba,
Nguyen, Nguyen, Rubinfeld 2011)

Thanks!
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