ℓ_p Testing and Learning of Discrete Distributions

Bo Waggoner Harvard

*Thanks: Clément Canonne

ITCS 2015

Drawing Conclusions from Data

Given i.i.d. samples from a discrete distribution *A*,

what can you tell me about A?

This paper:

- Learning: Estimate A "accurately"
- **Uniformity Testing:** Is *A* uniform or "far from" uniform?

Previously studied: ℓ_1 distance

(equivalently: total variation distance):

$$||A - B||_1 = \sum_{i=1}^n |A_i - B_i|$$

This work: ℓ_p distance, $p \ge 1$

This work:
$$\ell_p$$
 distance, $p \ge 1$
 $\|A - B\|_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$
 $\|A - B\|_{\infty} = \max_{i=1...n} |A_i - B_i|$

Given n, ϵ :

Learning: Output \hat{A} such that $\|\hat{A} - A\|_p \le \epsilon$.

Uniformity testing: If A=U, output "unif"; if $||A-U||_p \ge \epsilon$, "not". Both cases: Except with constant failure probability δ (e.g. 1/3)

Results

 $||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i}-B_{i}|^{p}\right)^{\frac{1}{p}}$

- Upper and lower bounds for each ℓ_p metric.
- Matching up to constant factors in most cases.

Unlike l_1 case:

- Exists a sufficient # of samples independent of n
- Behavior differs in "small" and "large" n regimes

Why care about ℓ_p ? $||A-B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$

Why Bo cares:

- I like the math/probability involved
- Fundamental problems deserve elegant algorithms/proofs (and small constants)

Why care about ℓ_p ? $||A-B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$

Why else you might care:

- Small data in a big world. What if we do not have enough samples to draw confident ℓ_1 conclusions?
- ℓ_p testers/learners are often useful as subroutines (Batu et al 2013, Diakonikolas et al 2015, ...)

What was known?

- **Learning**: order-optimal ℓ_1 (folklore), also ℓ_2 and ℓ_{∞} .
- Uniformity testing:
 - ℓ_1 : order-optimal lower, and upper for "very big" n (Paninski 2008)

 $O\left(\frac{n}{c^2}\right)$

- Independently (Diakonikolas, Kane, Nikishkin 2015): order-optimal ℓ_1 , and ℓ_2 for small-*n* regime
- Note: many cases "immediate" from prior work, most (all?) cases probably "easy" to experts
- But hopefully when taken together, **big picture insights** emerge

 $||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i}-B_{i}|^{p}\right)^{\frac{1}{p}}$

Outline

- Introductory stuff \checkmark
- Learning
- Uniformity testing
- Summary

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

For *p* >1:

- Exists a sufficient # of samples independent of n
- Behavior differs in "small" and "large" n regimes

Learning Alg

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i}-B_{i}|^{p}\right)^{\frac{1}{p}}$$

1. Let $\Pr[i] \propto \#$ samples of *i*

Learning Alg

$$\|A - B\|_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

1. Let $\Pr[i] \propto \#$ samples of *i*

Analysis:

- Elegant "folklore" proof for L₂ (thanks Clément!)
- Clément and I extended to general ℓ_p and large-n cases

Theorem (in particular): - For p = 1, $\frac{1}{\delta} \frac{n}{\epsilon^2}$ samples are sufficient to learn. - For $p \ge 2$, $\frac{1}{\delta} \frac{1}{\epsilon^2}$ samples are sufficient to learn.

Learning Alg

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i}-B_{i}|^{p}\right)^{\frac{1}{p}}$$

1. L	$- \frac{1}{2} $	
A p p	Given <i>p</i> , consider Holder conj	ugate $q: \frac{1}{p} + \frac{1}{q} = 1$
Ana	5 1 3	
- El	p: 1 $\frac{3}{4}$ $\frac{4}{3}$ $\frac{3}{2}$	2 ∞
- Tv	$q: \infty 5 4 3$	2 1
	small- <i>n</i> regime: $n \le \frac{1}{\epsilon^q}$	
	large- <i>n</i> regime: $n \ge \frac{1}{\epsilon^q}$	
	- For $p \ge 2$, $\frac{1}{\delta \epsilon^2}$ samples are sufficient to learn.	

$$||A - B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$$

For *p* >1:

- Exists a sufficient # of samples independent of n
- Behavior differs in • "small" and "large" n regimes

Threshold:
$$n = \frac{1}{\epsilon^q}$$

Outline

- Introductory stuff \checkmark
- Learning 🗸
- Uniformity testing
- Summary

Classic Coin Question

Coin: either fair or one side with ε more probability.

Q: How many flips to tell?

A: $O\left(\frac{1}{\epsilon^2}\right)$.

6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer?

6-sided die: either fair or one side with ϵ more probability.

Q: Do we need more trials than the coin, or fewer? A: Fewer!

6-sided die: either fair or one side with ε more probability.

Q: Do we need more trials than the coin, or fewer?

6-sided die: either fair or one side with ε more probability.

Q: Do we need more trials than the coin, or fewer? A: Fewer! (ℓ_{∞})

Testing,
$$1 \le p \le 2$$
 $||A-B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$

Testing Alg

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

Collision: pair of samples that are both of the same coordinate

Prior work counting collisions: Paninski (2008) (sort of); Goldreich and Don (2000); Batu, Fortnow, Rubinfeld, and Smith (2005)

Testing Alg

$$|A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

- 1. Let C = # collisions
- 2. Pick threshold T
- 3. If $C \leq T$, output "uniform"; else, "not".

Alg is optimal for all $1 \le p \le 2$, all regimes! (by selecting # samples and T appropriately)

Testing Alg

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

- 1. Let C = # collisions
- 2. Pick threshold T

3. If $C \leq T$, output "uniform"; else, "not".

Alg is optimal for all $1 \le p \le 2$, all regimes! (by selecting # samples and T appropriately)

Theorem (in particular):
- For p = 1,
$$\frac{9}{\delta} \frac{\sqrt{n}}{\epsilon^2}$$
 samples are sufficient to test uniformity.
- For p = 2, max $\frac{9}{\delta} \frac{1}{\sqrt{n}\epsilon^2}$, $\frac{9}{\delta} \frac{1}{\epsilon}$ samples suffice.

Testing,
$$1 \le p \le 2$$
 $||A-B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$

ℓ_{∞} Testing

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

ℓ_∞ Testing

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

Theorem (for $p = \infty$):

$$- \inf \ \theta\left(\frac{n}{\log n}\right) \le \frac{1}{\epsilon} \text{ ("small"), } \ \theta\left(\frac{\log n}{n\epsilon^2}\right) \text{ sar}$$
$$- \inf \ \theta\left(\frac{n}{\log n}\right) \ge \frac{1}{\epsilon} \text{ ("large"), } \ \theta\left(\frac{1}{\epsilon}\right) \text{ sar}$$

samples are necessary/sufficient.

samples are necessary/sufficient.

Note:

 Still have "small" and "large" regimes, but log(n) gets involved (Bounds still match at threshold)

ℓ_{∞} Testing

$$||A-B||_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

Theorem (for $p = \infty$):

$$- \text{ If } \ \ \theta\left(\frac{n}{\log n}\right) \leq \frac{1}{\epsilon} \ (\text{``small''}), \ \ \theta\left(\frac{\log n}{n\epsilon^2}\right)$$
$$- \text{ If } \ \ \theta\left(\frac{n}{\log n}\right) \geq \frac{1}{\epsilon} \ (\text{``large''}), \ \ \ \theta\left(\frac{1}{\epsilon}\right)$$

samples are necessary/sufficient.

samples are necessary/sufficient.

Note:

- 11

 θ

 Still have "small" and "large" regimes, but log(n) gets involved (Bounds still match at threshold)

Alg: • Small-*n*: look for "outlier" coordinate

Large-*n*: "bucket" into n^* groups and • look for outlier bucket

Gap for 2 < $p < \infty$ $||A-B||_p = \left(\sum_{i=1}^n |A_i - B_i|^p\right)^{\frac{1}{p}}$

- $\ell_2 \text{ alg} \rightarrow \text{sufficient} \quad 1/2 \\ \ell_\infty \text{ bound} \rightarrow \text{necessary}$
- Gap only in small-*n* case
- Seems to need different ideas

Outline

- Introductory stuff \checkmark
- Learning 🗸

• Summary

- Uniformity testing \checkmark

Algorithms Summary

- Learning: naive alg is order-optimal everywhere
- **Uniformity testing**: Collision Tester is order-optimal for $1 \le p \le 2$
- Uniformity testing for ℓ_{∞} : "almost-naive" alg is order-optimal

Ideas Summary

For *p* >1:

- Exists a sufficient # of samples independent of n
- Behavior differs in "small" and "large" *n* regimes
- $\frac{1}{\epsilon^q}$ seems to upper-bound "apparent support size"

Future Work

$$\|A - B\|_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

- Close gap for uniformity testing, 2 , small <math>n
- Strengthen "tightness" of lower bound for small-n learning, $1 \le p < 2$
- Test and learn "thin" distributions?
- Test and learn when *n* is not known?
- Test and learn for other "exotic" metrics? (Do Ba, Nguyen, Nguyen, Rubinfeld 2011)

Future Work

$$\|A - B\|_{p} = \left(\sum_{i=1}^{n} |A_{i} - B_{i}|^{p}\right)^{\frac{1}{p}}$$

- Close gap for uniformity testing, 2 , small <math>n
- Strengthen "tightness" of lower bound for small-*n* learning, $1 \le p < 2$
- Test and learn "thin" distributions?
- Test and learn when *n* is not known?
- Test and learn for other "exotic" metrics? (Do Ba, Nguyen, Nguyen, Rubinfeld 2011)

Thanks!