Online Stochastic Matching with Unequal Probabilities

Aranyak Mehta Google Bo Waggoner Harvard Morteza Zadimoghaddam Google

SODA 2015

1

Outline

- Problem and motivation
- Prior work, our main result
- Key idea: Adaptivity
- Ideas behind algorithm/analysis

Motivation: Search ads

Motivation: Search ads

[Mehta and Panigrahi, 2012]

[Mehta and Panigrahi, 2012]

[Mehta and Panigrahi, 2012]

[Mehta and Panigrahi, 2012]

[Mehta and Panigrahi, 2012]

Prior Work

- Online Matching with Stochastic Rewards Mehta, Panigrahi, FOCS 2012.
 - $\circ \quad \frac{\text{Greedy}}{\text{Opt}} = 0.5.$
 - For case where all p are equal and vanishing: $\frac{Alg}{Opt} \ge 0.567.$

Open: anything better than Greedy for unequal **p**

This work

For unequal, vanishing edge probabilities:

This work

For unequal, vanishing edge probabilities:

Outline

- Problem and motivation
- Prior work, our main result
- Key idea: Adaptivity Ideas behind algorithm/analysis

Adaptive: sees whether or not assignment succeeds

Our Approach

- 1. Start with an optimal non-adaptive alg that is straightforward to analyze
- 2. Add a small amount of adaptivity (second choices)
- 3. Analysis remains tractable by limiting amount of adaptivity

An optimal non-adaptive algorithm

- MP-2012: nonadaptive algs have upper bound of 0.5
- How to achieve 0.5? (Previously unknown.) Seems nonobvious.

Maximize marginal expected gain

Maximize marginal expected gain

Maximize marginal expected gain

NonAdaptive

Theorem: NonAdaptive has a competitive ratio of **0.5** for the general online stochastic matching problem.

Does not require vanishing probabilities.

Why do we like NonAdaptive?

- On a given instance, an arrival has the same "first choice" every time (regardless of previous realizations)
- Algorithm tracks/uses competitive ratio (probabilities of success)

Add Adaptivity (but not too much)

Proposed SemiAdaptive:

Assign next arrival to max $\Pr[i \text{ available }] p_{ij}$ unless already taken, in which case assign to second-highest.

Why do we like SemiAdaptive?

- On a given instance, an arrival has the same first and second choices every time (regardless of previous realizations)
- Algorithm tracks/uses competitive ratio (probabilities of success)

These allow us to analyze SemiAdaptive -- almost...

(Analysis?) Roadblock

 Want: when first-choice is not available, get measurable benefit by assigning to second choice
→ giving improvement over NonAdaptive's 0.5

(Analysis?) Roadblock

- Want: when first-choice is not available, get measurable benefit by assigning to second choice
 → giving improvement over NonAdaptive's 0.5
- Problem: correlation between availability of first and second choice. Perhaps when first choice is not available, most likely second choice is not available either.
 - → cannot guarantee improvement over NonAdaptive

(Analysis?) Roadblock

- Want: when first-choice is not available, get measurable benefit by assigning to second choice
 → giving improvement over NonAdaptive's 0.5
- Problem: correlation between availability of first and second choice. Perhaps when first choice is not available, most likely second choice is not available either.
 - → cannot guarantee improvement over NonAdaptive
- Fix: introduce independence / even less adaptivity. (no time to say more! sorry!)

RECAP

Online stochastic matching problem:

- edges succeed probabilistically
- maximize expected number of successes
- input instance chosen adversarially

New here:

 edge probabilities may be unequal

RECAP

Results:

- optimal 0.5-competitive NonAdaptive
- 0.534-competitive SemiAdaptive (with tweak) for vanishing probabilities

Key idea:

 control adaptivity to control analysis

Future Work

Everything about Online Stochastic Matching:

- Vanishing probabilities:
 - Equal: 0.567 ... ? ... 0.62
 - Unequal: 0.534 ... ? ... 0.62

- Large probabilities:
 - \circ Equal: 0.53 ... ? ... 0.62
 - Unequal: 0.5 ... ? ... 0.62

Future Work

Everything about Online Stochastic Matching:

- Vanishing probabilities:
 - Equal: 0.567 ... ? ... 0.62
 - Unequal: 0.534 ... ? ... 0.62

- Large probabilities:
 - Equal: 0.53 ... ? ... 0.62
 - Unequal: 0.5 ... ? ... 0.62

Thanks!

Additional slides

Final Algorithm "SemiAdaptive"

Assign next arrival to max Pr[i available] p_{ij} unless already taken,* in which case assign to second-highest.

* "it would have already been taken by a previous first-choice"

(key point: even less adaptive, more independence)

Ideas behind analysis

Pr[available]

Either first choice is the same as Opt's...

Ideas behind analysis

Either first choice is the same as Opt's...

...or both first and second choice would give at least as much "gain" as Opt's.

Ideas behind analysis

Very good because gains "compound".

Good because we get "second-choice gains". Either first choice is the same as Opt's...

...or both first and second choice would give at least as much "gain" as Opt's.

Note: Can only get 1 - $1/e \approx 0.632$ even with knowledge of instance

Example of defining Opt

