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Motivation: Search ads

4

advertisers

Time
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Simplified problem:
- display one ad per query
- have estimate of click 
probabilities
- advertisers pay $1 if 
click, $0 if no click
- advertisers have budget 
for one click per day

How to assign ads?
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[Mehta and Panigrahi, 2012]

Pr[ searcher clicks if we show this ad ]
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With prob p31: match succeeds

With prob 1 - p31: match fails
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[Mehta and Panigrahi, 2012]

match failed

may be matched 
again later

disappears 
(cannot re-try)



Alg’s performance =
# successes

Measuring algorithm performance
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Alg’s performance =
E[ # successes ]
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Alg’s performance =
E[ # successes ]

Opt’s performance =
size of max weighted 
assignment, budget 1
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Alg’s performance =
E[ size of matching ]

Opt’s performance =
size of max weighted 
assignment, budget 1

Opt Alg

Measuring algorithm performance

fixed,
offline vertices

online
arrivalsCompetitive ratio =

min   Alg
  Opt

over all input instances.

(Note: Opt is a bit funky … not achievable 
even with foreknowledge of instance.)



Prior Work

● Online Matching with Stochastic Rewards
Mehta, Panigrahi, FOCS 2012.
○ Greedy  = 0.5.

  Opt

○ For case where all p are equal and vanishing:
Alg   ≥  0.567.

     Opt

Open: anything better than Greedy for unequal p
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This work
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This work
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Opt

Alg

≥  0.534

For unequal, vanishing edge probabilities:

So what?

algorithmic 
ideas to beat 
Greedy
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Adaptive: sees whether or not 
assignment succeeds
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Our Approach

1. Start with an optimal non-adaptive alg that is 
straightforward to analyze

2. Add a small amount of adaptivity
(second choices)

3. Analysis remains tractable by limiting 
amount of adaptivity
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An optimal non-adaptive algorithm
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● MP-2012: nonadaptive algs have upper bound of 0.5

● How to achieve 0.5? (Previously unknown.) Seems 
nonobvious.



Maximize marginal expected gain
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Assign first arrival to 
vertex with largest pi1



Maximize marginal expected gain
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Maximize marginal expected gain
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online
arrivals

offline
vertices Assign next arrival to 

max
   Pr[ i available ] pi2

0.1

0.2

0.3

= (1 - 0.4) * 0.3
= 0.18

= (1) * 0.2
= 0.2



NonAdaptive
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Theorem: NonAdaptive has a competitive ratio of 0.5 
for the general online stochastic matching problem.

Does not require vanishing probabilities.



Why do we like NonAdaptive?

● On a given instance, an arrival has the same 
“first choice” every time
(regardless of previous realizations)

● Algorithm tracks/uses competitive ratio 
(probabilities of success)
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Add Adaptivity (but not too much)

Proposed SemiAdaptive:
 Assign next arrival to max  Pr[ i available ] pij
 unless already taken, in which case assign to
 second-highest.
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Why do we like SemiAdaptive?

● On a given instance, an arrival has the same 
first and second choices every time
(regardless of previous realizations)

● Algorithm tracks/uses competitive ratio 
(probabilities of success)

These allow us to analyze
SemiAdaptive -- almost...
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(Analysis?) Roadblock

● Want: when first-choice is not available, get measurable 
benefit by assigning to second choice
→ giving improvement over NonAdaptive’s 0.5
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available, most likely second choice is not available 
either.
→ cannot guarantee improvement over NonAdaptive
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(Analysis?) Roadblock

● Want: when first-choice is not available, get measurable 
benefit by assigning to second choice
→ giving improvement over NonAdaptive’s 0.5

● Problem: correlation between availability of first and 
second choice. Perhaps when first choice is not 
available, most likely second choice is not available 
either.
→ cannot guarantee improvement over NonAdaptive

● Fix: introduce independence / even less adaptivity.
(no time to say more! sorry!)
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RECAP

Online stochastic matching problem:
- edges succeed probabilistically
- maximize expected number of successes
- input instance chosen adversarially

New here:
- edge probabilities

may be unequal
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RECAP

Results:
- optimal 0.5-competitive NonAdaptive
- 0.534-competitive SemiAdaptive

(with tweak) for vanishing probabilities

Key idea:
- control adaptivity to

control analysis
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Future Work

Everything about Online Stochastic Matching:
● Vanishing probabilities:

○ Equal:        0.567  …  ?  …  0.62
○ Unequal:    0.534  …  ?  …  0.62

● Large probabilities:
○ Equal:        0.53  …  ?  …  0.62
○ Unequal:    0.5    …  ?  …  0.62
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Future Work

Everything about Online Stochastic Matching:
● Vanishing probabilities:

○ Equal:        0.567  …  ?  …  0.62
○ Unequal:    0.534  …  ?  …  0.62

● Large probabilities:
○ Equal:        0.53  …  ?  …  0.62
○ Unequal:    0.5    …  ?  …  0.62

Thanks!
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Additional slides
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Final Algorithm “SemiAdaptive”
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Assign next arrival to max  Pr[ i available ] pij
unless already taken, in which case assign to 
second-highest.

* “it would have already been taken
    by a previous first-choice”

(key point: even less adaptive, more independence)

*



Ideas behind analysis
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...or both first and 
second choice would 
give at least as much 
“gain” as Opt’s.

Either first choice is 
the same as Opt’s...

p42
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Ideas behind analysis
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...or both first and 
second choice would 
give at least as much 
“gain” as Opt’s.

Either first choice is 
the same as Opt’s...

p42

Pr[ available ]

q2

p22

q1

q3

q4

q5

p12

Very good because gains 
“compound”.

Good because we get 
“second-choice gains”.



Note: Can only get 1 - 1/e ≈ 0.632
even with knowledge of instance
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online
arrivals
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Opt Alg

1/n

1/n

1/n

1/n

1/n

1/n

Weighted matching: 1

E[ # of matches ]
= 1 - Pr[ all fail ]
= 1 -  (1 - 1/n)n

→ 1 - 1/e
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Alg’s performance =
E[ size of matching ]

Opt’s performance =
size of max weighted 
assignment, budget 1

Opt Alg

Example of defining Opt

fixed,
offline vertices

online
arrivals

1/2

2/3

1/4

1/4

Opt gets 1

Opt gets 1/2


