Fair Information Sharing for Treasure Hunting

Harvard EconCS, Feb 2015

Yiling Chen

Kobbi Nissim

Bo Waggoner

pirates searching for treasure....

Problem: could take a long time to find the treasure!

Ö

Working together?

Captain wants to convince pirates to pool info

- Goal: design a mechanism (without money) for cooperation in a competitive environment
- Examples: scientific credit, ...

Outline

- 1. Bo talks: summary of paper (~30min)
 - a. model and goals
 - b. proposed mechanism
 - c. results about the mechanism
 - d. extension to "composable" mechanisms
- 2. "Guided Discussion" (~20-30min)
 - a. approaches / solution concepts
 - b. goals / desiderata
 - c. models
- 3. Recap (~5min)

Outline

1. Bo talks: summary of paper

- a. model and goals
- b. proposed mechanism
- c. results about the mechanism
- d. extension to "composable" mechanisms

Model

discuss: other models, variants

- island: set S of locations
- pirate knows: subset S_i containing the treasure (believes treasure is uniformly random in S_i)
- beliefs about S_k: arbitrary
 (but believes treasure is uniformly random in S_i)
- each location takes one day to dig

Goals -- informally

- 1. "Welfare"
- subject to
- 2. "Fairness"
- 3. "Truthfulness"

Goals -- our interpretation

1. Welfare -- reduce number of digs

subject to

- 2. Fairness -- preserve "winning chances"
- 3. Truthfulness -- true report maximizes Pr[win]

discuss: other interpretations

Outline

- 1. Bo talks: summary of paper
 - a. model and goals
 - b. proposed mechanism
 - c. results about the mechanism
 - d. extension to "composable" mechanisms

Mechanism: Framework

discuss: other frameworks

- 1. Each pirate reports his/her set S_i
- 2. Captain partitions the intersection
- 3. Pirate i may only dig in assigned area

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p_i fraction

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability $p_{\rm i}$ of winning the treasure
- partition according to p and assign i a p_i fraction

Computational efficiency points:

- key obs: probabilities do not depend on set structure!
- to implement, just need to compute set intersection and partition it efficiently

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p, fraction

- draw random order for each i
- give i all locations that i would win

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p, fraction

- draw random order for each i
- give i all locations that i would win

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p, fraction

- draw random order for each i
- give i all locations that i would win

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p, fraction

- draw random order for each i
- give i all locations that i would win

Simplified exploration game:

- pretend i explores S_i in uniformly random order
- pretend treasure is uniformly random in intersection
- i has some probability p_i of winning the treasure
- partition according to p and assign i a p, fraction

- draw random order for each i
- give i all locations that i would win

Outline

- 1. Bo talks: summary of paper
 - a. model and goals
 - b. proposed mechanism
 - c. results about the mechanism
 - d. extension to "composable" mechanisms

Welfare: reduce # of digs
 Idea: compare to simplified exploration game

Result: If all sets $\geq 10^*$ (intersection size), number of digs is reduced by factor of 10 (as number of pirates grows, \rightarrow factor of 20).

2. Fairness: preserve winning chancesIdea: compare to simplified exploration game

Result: Pr[win] is exactly the same as in simplified exploration game.

3. Truthfulness: reporting truthfully maximizes Pr[win] if others are being truthful

Result: yes

Sidenote: ε-voluntary participation

- not clear how to formally define IR
- ε comes (in some sense) from ties and small set sizes

3. Truthfulness: reporting truthfully maximizes Pr[win] if others are being truthful

Proof idea part 1: Don't want to report a location not in <u>S</u>

- may or may not change intersection

- either way, hurts i's chances most

3. Truthfulness: reporting truthfully maximizes Pr[win] if others are being truthful

Proof idea part 2: Don't want to omit a location in S

- may or may not change intersection
- will help i's chances
- but balanced by chance it contained the treasure

Outline

1. Bo talks: summary of paper

- a. model and goals
- b. proposed mechanism
- c. results about the mechanism
- d. extension to "composable" mechanisms

Mega-Coalitions

Mega-Coalitions

Goal: create a mechanism taking in coalitions and outputting a mega-coalition

Mega-Mechanism

Idea: less-simplified exploration game

- Each coalition (recursively) partitions its intersection (agents are coalitions of size one that give themselves their whole set)
- 2. Now each agent has some resulting set S_i
- 3. Run the simplified exploration game with these sets

Results

Fairness: sure

Truthfulness: yes

Dynamics: a coalition ε-prefers to join earlier

Outline

1. Bo talks: summary of paper

- a. model and goals
- b. proposed mechanism
- c. results about the mechanism
- d. extension to "composable" mechanisms
- 2. "Guided Discussion"
 - a. approaches / solution concepts
 - b. goals / desiderata
 - c. models

3. Recap

Outline

- 2. "Guided Discussion"
 - a. approaches / solution concepts
 - b. goals / desiderata
 - c. models

Working together?

Captain wants to convince pirates to pool info

- Goal: design a mechanism (without money) for cooperation in a competitive environment
- Examples: scientific credit, ...

Q: Is this a reasonable problem to solve? a reasonable approach to solving it?

Challenges of formalizing the setting

- Knowledge of pirates?
- Power of captain?

Cooperative Game Theory?

Seemed a bad fit...

Dream framework/approach

- 1. Collect reports S_i
- 2. Give "hints" to each i
- 3. Pirates do whatever they want

Outline

- 2. "Guided Discussion"
 - a. approaches / solution concepts
 - b. goals / desiderata
 - c. models

Goals / Desiderata

1. Welfare - ok, but what is your benchmark?

Goals / Desiderata

- 1. Welfare ok, but what is your benchmark?
- 2. Fairness (what is "fair"?)

ours: preserve "spirit of competition" compare: Shapley Value type solution (do other notions of fairness admit truthful solutions?)

Goals / Desiderata

- 1. Welfare ok, but what is your benchmark?
- 2. Fairness (what is "fair"?)

ours: preserve "spirit of competition" compare: Shapley Value type solution (do other notions of fairness admit truthful solutions?)

3. Truthfulness - necessary? max Pr[win] vs max E[utility] perhaps digging is costly (is our mechanism is truthful in E[utility] sense?)

Outline

- 2. "Guided Discussion"
 - a. approaches / solution concepts
 - b. goals / desiderata

c. models

Digging into our model

- island: set S of locations
- **pirate knows**: subset S_i containing the treasure (believes treasure is uniformly random in S_i)
- **beliefs about S**: arbitrary (but believes treasure is uniformly random in S_i)
- each location takes one day to dig

- 1. Each pirate has a **partition** of S (the island)
- 2. Nature picks treasure location uniformly at random
- 3. Each pirate observes S_i = element of partition

- Each pirate has a **partition** of S (the island) 1.
- Nature picks treasure location uniformly at random 2.
- Each pirate observes S_i = element of partition 3.

- 1. Each pirate has a **partition** of S (the island)
- 2. Nature picks treasure location **uniformly at random**
- 3. Each pirate observes S_i = element of partition

- 1. Each pirate has a **partition** of S (the island)
- 2. Nature picks treasure location **uniformly at random**
- 3. Each pirate observes S_i = element of partition

- 1. Each pirate has a **partition** of S (the island)
- 2. Nature picks treasure location **uniformly at random**
- 3. Each pirate observes S_i = element of partition

- 1. Each pirate has a **partition** of S (the island)
- 2. Nature picks treasure location **uniformly at random**
- 3. Each pirate observes S_i = element of partition

Problem 1: what if pirate beliefs are inconsistent?

Problem 1: what if pirate beliefs are inconsistent? \rightarrow Ok, suppose they are consistent....

Problem 2: how does the mechanism aggregate reports?

Problem 1: what if pirate beliefs are inconsistent? \rightarrow Ok, suppose they are consistent....

Problem 2: how does the mechanism aggregate reports? \rightarrow OK, suppose it knows the prior or something....

Q for audience: why can't we re-cut the island so that the prior is now uniform, then run our mechanism?

Problem 1: what if pirate beliefs are inconsistent? \rightarrow Ok, suppose they are consistent....

Problem 2: how does the mechanism aggregate reports? \rightarrow OK, suppose it knows the prior or something....

Q for audience: why can't we re-cut the island so that the prior is now uniform, then run our mechanism?

Problem 3: how to get "fairness" and truthfulness?? Ideally: robust to beliefs about other agents

A "perfect" mechanism?

Q for audience: how to change "simulated exploration" mechanism to be truthful with more general agent beliefs?

A "perfect" mechanism?

Q for audience: how to change "simulated exploration" mechanism to be truthful with more general agent beliefs?

- 1. Each pirate submits an exploration strategy
- 2. The mechanism simulates everyone's strategy
- 3. Give each location to the pirate that explores it first in simulation

A "more perfect" mechanism

- 1. Each pirate submits their "signal" / information
- 2. The mechanism simulates an "equilibrium" (like what?)
- 3. Give each location to the pirate that explores it first in simulation
 - 1. Satisfying?
 - 2. How to compute "equilibrium"?

Outline

1. Bo talks: summary of paper

- a. model and goals
- b. proposed mechanism
- c. results about the mechanism
- d. extension to "composable" mechanisms

2. "Guided Discussion"

- a. approaches / solution concepts
- b. goals / desiderata

c. models

What did we do?

- Model of competitive search problem
- Mechanism for **cooperation**
- Welfare, fairness, and truthfulness properties

Future Work

- **Building up**: Extensions, variants, dynamics of coalition formation...
- Digging down: assumptions, model, alternative frameworks, bargaining with information sharing, alternative solution concepts...

Future Work

- **Building up**: Extensions, variants, dynamics of coalition formation...
- Digging down: assumptions, model, alternative frameworks, bargaining with information sharing, alternative solution concepts...

Thanks!

