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A common pattern

information “center” or designer useful summary

*drawing not to scale

acquisition aggregation
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An important instance
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An important instance

“center” or designer

*drawing not to scale

acquisition aggregation
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data hypothesis

Example: individuals’ medical data, for predicting disease from features



Another important instance

prediction or decision

*drawing not to scale

acquisition aggregation
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(expert) opinions 
and beliefs

“center” or designer



Another important instance

prediction or decision

*drawing not to scale

acquisition aggregation
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(expert) opinions 
and beliefs

“center” or designer

Example: a prediction market for predicting whether a study on medical data will 
be replicated successfully.



Outline

1. Approach #1: Purchasing data for learning
(main part of today’s talk)

2. Approach #2: strategic aggregation of beliefs

3. Discussion and future directions
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J Abernethy, Y Chen, C Ho, B Waggoner. Low-Cost Learning via Active Data Procurement. EC 2015.



Outline for “purchasing data”

1. Motivation, goal, and obstacles

2. Model, result, and approach

3. Discussion
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J Abernethy, Y Chen, C Ho, B Waggoner. Low-Cost Learning via Active Data Procurement. EC 2015.



The machine-learning approach
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Given: hypothesis class H, loss function loss(h, z) on hypothesis h and data point 

Goal: minimize “excess risk” (ER)

ER := (expected loss of alg’s hypothesis) - (expected loss of optimal h)

(expectation over a new data point from that distribution)

T data points algorithmunknown 
distribution

i.i.d.

hypothesis



ER := (expected loss of alg’s hypothesis) - (expected loss of optimal h)

Example result:
For binary classification, loss(h, (x,y)) = 1 if h(x) = y and 0 otherwise,

The machine-learning approach
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measure of complexity

quantity of resources

Some strengths of ML:
● very general and effective algorithms
● GE bounds capturing relationship of success to complexity and resources



The gap in theory...
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acquisition aggregation

Here: machine learning theory is excellent



acquisition aggregation
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Here: machine learning theory is excellent

Here: extremely lacking!

The gap in theory...



Why is this a problem?
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Often, data comes from strategic agents.

acquisition aggregation

mechanism

Challenge: design mechanisms to acquire and aggregate data.



What has been done?

Roth, Schoenebeck EC 2012
Horel, Ioannidis, Muthukrishnan LATIN 2014
Ghosh, Roth EC 2011
Ligett, Roth WINE 2012
Cummings, Ligett, Roth, Wu, Ziani ITCS 2015
Cai, Daskalakis, Papadimitriou COLT 2015
Cummings, Ioannidis, Ligett COLT 2015
... 
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acquisition aggregation

Very exciting and active area!
Varied models and objectives: preserve privacy, principal-agent “effort” models, 
data may be falsifiable / not verifiable, ….

But the literature generally does not:
● offer solutions for generic loss functions
● leverage existing ML algorithms
● give bounds relating success,

complexity, and resources

mechanism



Two key goals for this field of research
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(1) Given ML algorithm with ER bound “K”...

...produce mechanism with ER bound “f(K)”.

(2)  Understand properties of this new bound (in terms of complexity and resources).

acquisition aggregation

acquisition aggregation



Two key goals for this field of research
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(1) Given ML algorithm with ER bound “K”...

...produce mechanism with ER bound “f(K)”.

(2)  Understand properties of this new bound (in terms of complexity and resources).

acquisition aggregation

acquisition aggregation

Sneak peek: We’ll achieve these for one class of algorithms and an 
incomplete understanding of complexity.



Obstacles / challenges
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1. Relatively few data are useful

studying ACTN-3 
mutation and running

have mutation runners

Want $10 to participate 
in a study on HIV?

2. Data and cost to reveal it may be correlated HIV positive HIV negative

yes yes yes yes

yes

3. Usefulness of data (ML) and price paid (econ) live in different worlds 

auctions, budgets, 
reserve prices, value 
distributions….

gradients, entropies, loss 
functions, divergences...



Outline for “purchasing data”

1. Motivation, goal, and obstacles

2. Model, result, and approach

3. Discussion
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The classic statistical learning model

T data points algorithm

20

unknown 
distribution

i.i.d.

hypothesis



The classic statistical learning model

T data points algorithm
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unknown 
distribution

i.i.d.

hypothesis

Follow-the-Regularized Leader (FTRL):
● hypothesis class is a Hilbert space (e.g. hyperplanes)
● loss function is Lipschitz and convex in h (e.g. hinge loss)
● processes data points online, outputting a hypothesis at each step

Regret: (total loss of these on arriving data) - (loss of optimal h in hindsight)

Classic FTRL result: “regret”                  , even if data is chosen adversarially.
Online-to-batch conversion ⇒ ER                     .



(  , c2)

(  , c3)

(  , c1)

A model that adds incentives

T agents
(data, cost)

unknown 
distribution

i.i.d.

mechanism hypothesis
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(  , c2)

(  , c3)

(  , c1)

A model that adds incentives

T agents
(data, cost)

unknown 
distribution

i.i.d.

mechanism hypothesis
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In our model:
● agents arrive online
● costs may depend on the data arbitrarily (even chosen by an adversary)
● costs bounded in [0,1]
● model of cost: threshold “take-it-or-leave-it price” for which agent reveals data
● data cannot be fabricated or falsified



Given a Hilbert space of hypotheses, a Lipschitz convex loss function,
and budget constraint B, our mechanism achieves excess risk

Our main result

where gamma in [0,1], to be discussed later.
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black-box calls

our mechanism
with budget B

FTRL algorithm

(  , c2)

(  , c3)

(  , c1)

i.i.d.

our hypothesis

measure of complexity

quantity of resources



How does the mechanism work?

(  , c2)

(  , c3)

(  , c1)

agents arrive online before each arrival,
post a take-it-or-leave-it 
menu of prices

data price
$0.71
$0.38
...

receive 
current 
hypothesis

25

implicitly specified
by an algorithm
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How does the mechanism work?

(  , c2)

(  , c3)

(  , c1)

agents arrive online before each arrival,
post a take-it-or-leave-it 
menu of prices

data price
$0.71
$0.38
...

agent accepts 
or rejects

receive 
current 
hypothesis

Goal: show that these hypotheses 
have low regret on the data sequence.
(online-to-batch ⇒ low excess risk)
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send 
importance-
weighted data

implicitly specified
by an algorithm



How does the mechanism work?

(  , c2)

(  , c3)

(  , c1)

agents arrive online before each arrival,
post a take-it-or-leave-it 
menu of prices

data price
$0.71
$0.38
...

agent accepts 
or rejects

receive 
current 
hypothesis

How to choose the prices to post?

28

send 
importance-
weighted data

implicitly specified
by an algorithm



Roadmap: deriving the pricing strategy
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1. Start from FTRL analysis for low regret.

2. Consider simple setting where all costs are 1.
Prove regret guarantee.
(Have matching lower bound.)

3. Consider simple setting where agents report costs truthfully to mechanism.
Derive “optimal” price-posting strategy and prove regret guarantee.
(Have matching lower bound.)

4. Leverage previous solution to get a regret guarantee for the general setting.
(Gap to known lower bound -- price of strategic behavior!)



First step: the analysis of FTRL
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FTRL: At time t, pick

where:
● zs is the data point arriving at time s
● G is a strongly-convex function (called the “regularizer”)
● η is a parameter to be chosen later



First step: the analysis of FTRL
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FTRL: At time t, pick

where:
● zs is the data point arriving at time s
● G is a strongly-convex function (called the “regularizer”)
● η is a parameter to be chosen later

Key regret lemma: show that regret 
where

Using the lemma: By assumption, Δt in [0,1].
Choose to get regret

Can do better (sometimes): Imagine we knew in advance
Can choose                             to get regret



Second step: all costs are 1
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Just make a yes/no decision on each data point.

(  , 1)

data price
$1
$0
...

ht
arriving agent today’s menu

Key idea: must decide randomly! (to defeat adversary)

data     Pr[samp]
0.34
0.15
...



Second step: all costs are 1
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Recall FTRL regret lemma: Regret
where       .

Challenge: not enough budget to purchase every data point.
(Must randomly subsample.)

Importance-weighted loss: given data point z when Pr[samp] = p,
send “importance-weighted” loss function .

“Importance-weighted” regret lemma:
Let qt = Pr[sample arrival t]. Then for any choices of qt,
by feeding FTRL “importance-weighted losses”,

regret .



Second step: all costs are 1
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Recall importance-weighted regret lemma:
by feeding FTRL importance-weighted losses (when data is obtained) and zeroes 
(otherwise), regret .

Result: Setting every qt = B/T and choosing     yields regret  .
Lower bound: regret   (identifying a slightly biased coin).

Imagine we could solve the following problem…

Actually, with a tiny bit of prior knowledge, we can! Choose qt ∝ Δt.

Better result: With advance knowledge of    ,
can achieve regret  .



Third step: “at-cost”
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Suppose that: agents, when they arrive, truthfully reveal their cost.
(for purposes of analysis only)

(  , ct)

data   Pr[post ct]
0.55
0.08
...

ht
arriving agent today’s menu

Key idea: almost identical approach as when all costs were 1!

Result: With advance knowledge of , by picking
can achieve regret       .

Result: matching lower bound (see paper for details on what this means).



Final step: the price-posting distribution
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What we’d like to do: obtain the data point with probability
Problem: the data and cost may be adversarially chosen.

Unfairly tricky-yet-simple insight: Draw a price according to cdf

Why?? For every ct, ... 

Result: With advance knowledge of ,
get regret    .

Note the loss versus the previous result:
cost due to strategic behavior!

(This loss is the gap between our upper
and lower bounds…)



Outline for “purchasing data”

1. Motivation, goal, and obstacles

2. Model, result, and approach

3. Discussion
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Given a Hilbert space of hypotheses, a Lipschitz convex loss function,
budget constraint B, and advance knowledge of gamma, our mechanism achieves

where .
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(  , c2)

(  , c3)

(  , c1)

i.i.
d.

Revisiting the main result, discussion

Feasibility of knowing gamma?
● Just a single scalar (compare to e.g. knowing marginal distribution of costs)
● In practice (and our simulations), gamma can be learned online
● Can replace gamma with any upper bound that is known, and get

a corresponding ER guarantee. Example: gamma ≤ sqrt(average cost).



Given a Hilbert space of hypotheses, a Lipschitz convex loss function,
budget constraint B, and advance knowledge of gamma, our mechanism achieves

where 
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(  , c2)

(  , c3)

(  , c1)

i.i.
d.

Discussion on meaning of result

Recall: the FTRL algorithm that sees all T data points could “at best” guarantee
ER   where      .

Implications:
● gamma ≤ sqrt(average cost).
● gamma ≤ sqrt(average “difficulty”).
● Can take advantage of beneficial correlations!



● Proposed a model of strategic data-holders grounded in statistical learning.

● Proposed mechanism utilizing existing FTRL learning algorithms.

● Proved regret and ER bounds as function of “complexity” and budget.

● We also saw:
○ a way to trade off algorithmic and monetary “value” of a data point
○ a “price of strategic behavior”: gap in bounds when agents maximize profit

Future directions:
● More models of strategic data holders
● Interface with more ML algorithms
● Better measures and understanding of “problem complexity”
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(  , c2)

(  , c3)

(  , c1)

i.i.
d.

Recap: the key points



Y Chen, B Waggoner. Informational Substitutes for Prediction and Play. Working paper, 2016.

Outline

1. Approach #1: Purchasing data for learning
(main part of today’s talk)

2. Approach #2: strategic aggregation of beliefs

3. Discussion and future directions
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Motivation: strategizing in aggregation
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We don’t understand how agents strategically reveal and aggregate information
(even in relatively simple settings).

agents mechanism prediction

?

In my opinion:
● prediction markets are the simplest/cleanest model for studying this problem
● we know almost nothing about information aggregation in prediction markets!



Prediction market model

Nature

event

?

traders iteratively update market prediction event is revealed, 
payments assigned

(correlated) 
signals

Payment for changing prediction from p to p’ with outcome     is S(p’,    ) - S(p,    ), 
where S is any proper scoring rule.

Ex: the popular “log” scoring rule is S(p,    ) = log p(    ).

43



Prior work on aggregation in markets

● Chen, Reeves, Pennock, Hanson, Fortnow, Gonen, WINE 2007:
For the log scoring rule, if signals are conditionally independent, information is 
“immediately” aggregated.

● Dimitrov, Sami, EC 2008:
For the log scoring rule, information is not always immediately aggregated.

● Gao, Zhang, Chen, EC 2013:
For the log scoring rule, if signals are independent, information is aggregated 
“as late as possible”.

44



Our results

We propose a definition of informational substitutes and complements.
For every scoring rule and information structure,

● information is “immediately” aggregated if and only if
signals are substitutes.

● information is aggregated “as late as possible” if and only if
signals are complements.

Prior results are special cases for the log scoring rule (easy to show).

Sidenote: definitions have natural characterizations, algorithmic applications….
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Outline

1. Approach #1: Purchasing data for learning
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3. Discussion and future directions
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Recall the problem, and two approaches

47

information “center” or designer useful summary

acquisition aggregation



Recall the problem, and two approaches

data hypothesis

(expert) opinions 
and beliefs

prediction or decision

48



Challenge going forward
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What can these approaches 
teach each other?



Example: linear regression.
Goal: accurately predict a test data point using y = ax + b.

Market Framework:

1. Designer chooses initial parameters a,b.

2. Traders arrive, iteratively update parameters to a’, b’.

3. Designer draws a test data point (x,y).
Each update gets paid loss(a,b, x,y) - loss(a’,b’, x,y), where
loss(a,b, x,y) = (y - (ax+b))2.

An illustrative mechanism

50



Example: linear regression.
Goal: accurately predict a test data point using y = ax + b.

Market Framework:

1. Designer chooses initial parameters a,b.

2. Traders arrive, iteratively update parameters to a’, b’.

3. Designer draws a test data point (x,y).
Each update gets paid loss(a,b, x,y) - loss(a’,b’, x,y), where
loss(a,b, x,y) = (y - (ax+b))2.

An illustrative mechanism

Note: First proposed in Abernethy-Frongillo NIPS 2011.
Updated to add differential privacy for traders, other features in Waggoner-Frongillo-Abernethy NIPS 2015.
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● What if traders just have data rather than beliefs?

● Easy! Run one iteration of a learning algorithm on their data point(s).
Use its output as the updated market hypothesis.

● If data point was drawn i.i.d. from the underlying distribution,
trader can a priori expect to make a profit.

An illustrative mechanism

Market framework:

1.  Designer picks (a,b)
2.  Traders update to (a’,b’)
      (repeat)
3.  Designer draws test data,
      pays by improvement in loss

52

previous 
hypothesis

agent’s 
data point

updated 
hypothesis



This mechanism accepts both kinds of inputs -- data and beliefs.
But it raises more questions than it answers ...

Q: What does “truthfulness” mean for this mechanism? Is it achieved?

Q: Where is the line between data and beliefs in this setting?

Q: To what extent is this a learning algorithm iteratively updating versus a 
mechanism relying on agents to aggregate?

→ Each of these questions points at a direction for future work!

Raises questions pointing at future work
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● Machine learning must deal with strategic data.
Not just to guarantee good learning bounds, but due to privacy, user control, 
efficient use of financial resources, ….

● Mechanisms for belief aggregation must deal with structure of information.
Hopefully structure such as substitutes allows us to leverage algorithms to help.

● Mechanisms of the future should draw on the strengths of both approaches.

Conclusion: toward the future

54Thanks!
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Additional slides
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MNIST dataset -- handwritten digit classification

Brighter green 
= higher cost

Toy problem: 
classify (1 or 4) vs 
(9 or 8)

Simulation results
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● T = 8503
● train on half,

test on half
● Alg: Online Gradient Descent

Naive: pay 1 until budget
is exhausted, then run alg

Baseline: run alg on all
data points (no budget)

Large γ: bad correlations
Small γ: independent cost/data

Simulation results



Defining informational substitutes

(Much harder to define than substitutable goods!)

Question: What is the “value” of information in the first place?
A: given a decision problem, the expected utility to observe that signal before acting.

58

decision

V(∅) = expected utility when observing no signals before deciding

prior



Defining informational substitutes

(Much harder to define than substitutable goods!)

Question: What is the “value” of information in the first place?
A: given a decision problem, the expected utility to observe that signal before acting.

59

decision

V(A) = expected utility for observing A, then deciding
V(A) - V(∅) = marginal value of A

posterior
signal A

observation



Defining informational substitutes

(Much harder to define than substitutable goods!)

Question: What is the “value” of information in the first place?
A: given a decision problem, the expected utility to observe that signal before acting.

60

decision

V(A,B) = expected utility for observing A and B, then deciding
V(A,B) - V(A) = marginal value of B if already observing A

signal A

observations

signal B

posterior



Defining informational substitutes

Definition: Signals A and B are substitutes with respect to a particular decision 
problem if the marginal value of B diminishes with knowledge of A:

V(A,B) - V(A) ≤ V(B) - V(∅) .

and analogously with roles reversed.

Example: Say I only choose umbrella if [rainy and cold] or [sunny and warm].
Then radar map and thermometer reading are complements.

But: When choosing clothes for a run, these two signals are substitutes!
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Some nice facts about substitutes

● A set of signals are substitutes iff expected utility is a submodular function on 
a (continuous) lattice defined over the signals.

● Consider the amount of “bits” of information a signal reveals about an event.
A and B are substitutes iff the amount revealed by B diminishes given A.

● Consider the “distance” moved by Bayesian updating a distribution on B.
A and B are substitutes iff this distance diminishes given A.

● Algorithmic application: how to choose what signals to purchase under 
constraints? (1-1/e)-approximation for substitutes; hard in general.
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Algorithmic application of substitutes

Input:
● decision problem
● set of signals A,B,... with prices πA, πB, …
● Budget constraint

63

Our result: Substitutes ⇒ efficient (1-1/e)-approximation algorithm.

(Generalizes approach/results of Guestrin, Krause, Singh, ICML 2005 and related literature.)

Output:
set of signals to purchase
maximizing utility,
subject to budget constraint

$0.31

$0.09

$$



● Allows market to minimize any divergence-based loss function.
Extends to nonparametric hypotheses via sample-based scoring rules of
Zawadzki and Lahaie, AAAI 2015.

● (beautiful connections to exponential-family distributions as in above paper)

● Can ensure differential privacy for traders’ data / updates if of bounded size,
via adaptation of “continual observation”. (Works for nonparametric hypotheses 
when combined with Hall, Rinaldo, Wasserman, JMLR 2013.)

Some further notes about WFA-NIPS’15
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Market framework:

1.  Designer picks (a,b)
2.  Traders update to (a’,b’)
      (repeat)
3.  Designer draws test data,
      pays by improvement in loss


