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Standard model:

fully-informed bidders

More realistic:

bidders must invest effort 
to learn values

A glaring omission in mechanism design

- neighborhood: good
- flooring: excellent
- cabinets: old
- ISP: Comcast

value: 8

- neighborhood: ??
- flooring: ??
- cabinets: ??
- ISP: ??

value: ??



● buying a house

● acquiring a startup

Problem: how to get good welfare?
● You’d hope traditional mechanisms would be robust with inspection costs

Inspection costs could matter a lot:



Traditional economics approaches for welfare

Since Vickrey 1961: prefer “progressive” procedures.

1. Begin with all potential matches.
2. Gradually discard low-value matches.
3. Eventually make high-value matches.

Examples:
● Ascending-price / second-price auctions
● Deferred acceptance



Traditional economics approaches for welfare

Since Vickrey 1961: prefer “progressive” procedures.

1. Begin with all potential matches.
2. Gradually discard low-value matches.
3. Eventually make high-value matches.

Examples:
● Ascending-price / second-price auctions
● Deferred acceptance

Problems (intuitively):
● Agents must decide whether to inspect early.
● Bidder inspection may be poorly coordinated.



Our general theme

With inspection costs, mechanisms for assignment should:

1. Begin with no potential matches (high value threshold).

2. Allow bidders to search for highest-value matches first.

3. As soon as a match is found, lock it in.

Why (intuitively):
1. Allow bidders to search without exposure to risk.
2. Coordinate search from highest “potential value” down.



Contributions

1. Simultaneous/ascending formats are highly suboptimal 
(unbounded price of anarchy) with inspection costs.

2. On the other hand, descending-price correctly coordinates 
bidder search.

3. Combining optimal search theory with auction theory
⇒ tight correspondence to the setting without inspection.



Outline of talk

● Formal model

● The optimal search procedure

● Descending-price reduction and results

● List of extensions



Each  j  initially draws private cost cj and type θj (agents may be correlated).

At any time, j may inspect, paying cj and drawing vj ~ Fθj independently.

Inspection is:
● instantaneous,
● unobservable,
● mandatory upon obtaining the item.

Cost of inspection: c1 c2 c3

Value:

Formal model

Fθ1 Fθ2 Fθ3



Our goal: a mechanism with good welfare.

welfare  =  (value of winner)  -  (sum of all inspection costs invested)

e.g.  v1 - c1 - c3

Cost of inspection: c1 c2 c3

Value: v1 v3

Formal model

Fθ2



With non-strategic bidders, solved by Weitzman (1979).

Our analysis based on Gittins index theory
(Gittins 1970s; Weber 1992).

The Optimal Algorithm



A thought experiment for bidder  j

Imagine: when  j  inspects, an investor pays the inspection cost.
But:  j  can only keep a “capped” amount of the value; repays excess.

Suppose  j  claims above the cap:  always acquires if she sees  vj > cap.
Then investor gets  E[ (vj  -  “cap”)+ ] .

$
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A thought experiment for bidder  j

Imagine: when  j  inspects, an investor pays the inspection cost.
But:  j  can only keep a “capped” amount of the value; repays excess.
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$

Key Lemma: welfare(j) ≤ E[ 1j
acq κj ]   with equality if  j  claims above the cap.



Deriving OPT

$

Key Lemma: welfare(j) ≤ E[ 1j
acq κj ]   with equality if  j  claims above the cap.

Corollary 1: welfare(OPT) <= E[ maxj κj ].

Corollary 2: Always allocating to argmaxj κj is optimal...

...if all bidders claim above the cap.



c1 c2 c3

The optimal algorithm

1. Start a descending “clock” at infinity.

2. When it reaches the highest fair cap,
that bidder inspects. fair cap1

fair cap3

fair cap2

Fθ1 Fθ2 Fθ3

Clock



c1 v1 c2 c3

The optimal algorithm

1. Start a descending “clock” at infinity.

2. When it reaches the highest fair cap,
that bidder inspects.
If her value ≥ fair cap, allocate to her. Else, continue.

Fθ2
Fθ3

Clock

fair cap1

fair cap3

v1

fair cap2



c1 v1 c2 c3 v3

The optimal algorithm

Fθ2

1. Start a descending “clock” at infinity.

2. When it reaches the highest fair cap,
that bidder inspects.
If her value ≥ fair cap, allocate to her. Else, continue.

Clock

fair cap3

v1

fair cap2

v3



1. Start a descending “clock” at infinity.

2. When it reaches the highest fair cap,
that bidder inspects.
If her value ≥ fair cap, allocate to her. Else, continue.

3. As soon as any observed value exceeds the clock,
allocate to that bidder.

c1 v1 c2 c3 v3

The optimal algorithm

Fθ2

Clock

v1

fair cap2

v3



1. Start a descending “clock” at infinity.

2. When it reaches the highest fair cap,
that bidder inspects.
If her value ≥ fair cap, allocate to her. Else, continue.

3. As soon as any observed value exceeds the clock,
allocate to that bidder.

Check: bidders always claim above the cap,
allocated to highest κj.

c1 v1 c2 c3 v3

The optimal algorithm

Fθ2

Clock

v1

fair cap2

v3



From Algorithm to Mechanism

Descending-price:

● Global descending price starting from infinity.

● At any time, any bidder may claim the item,
ending the auction and paying the current price.

price



Main results: reduction to classic first-price

Theorem: The best-response “claim time” and welfare of:
● a bidder with capped value κ, and
● a bidder with zero inspection cost and value equal to κ

are identical. Furthermore, bidders claim above the cap.



Main results: reduction to classic first-price

In other words: the Dutch auction is invariant to inspection costs.

Why? Bidders claim above the cap;
can act as though funded by an investor.
→ Minimizes exposure to risk.

Theorem: The best-response “claim time” and welfare of:
● a bidder with capped value κ, and
● a bidder with zero inspection cost and value equal to κ

are identical. Furthermore, bidders claim above the cap.

Corollaries:
● Equilibria are in one-to-one correspondence with first-price
● e/(e-1)  price of anarchy
● optimal welfare when bidders are “symmetric”
● … any other property of first-price auctions.



Extension: multi-item assignment

Multi-item, unit demand setting:
● Global descending clock; claim any item any time.

● Welfare >= 0.43 * opt.
(note: Gittins fails! 0.5+ε in polytime unknown)

● We don’t know if bidders claim above the cap,
but they have a smoothness deviation that does.

Recall: Vickrey fails even with a single item!
Key principles the same:
● Coordinate search from high to low

(across items and bidders).
● Minimize exposure to risk.



Other extensions

● Multiple stages of inspection (no loss in welfare!).

● Sequential posted-price also achieves a constant factor
under independence (using prophet inequality).

● Common values.
● Revenue guarantee.
● Approximate best-responses.

Key theme: if bidders claim above the cap,
analysis essentially reduces to standard setting.



Other extensions

● Multiple stages of inspection (no loss in welfare!).

● Sequential posted-price also achieves a constant factor
under independence (using prophet inequality).

● Common values.
● Revenue guarantee.
● Approximate best-responses.

Key theme: if bidders claim above the cap,
analysis essentially reduces to standard setting.

Thanks!



Excess slides



1. The fair cap measures the “potential value” of each bidder.

2. Explore “high-risk, high-reward” options first.

Some notes on the fair cap

Fθ

Clock

fair cap

value pdf = cost


