Bitcoin, blockchain, etc

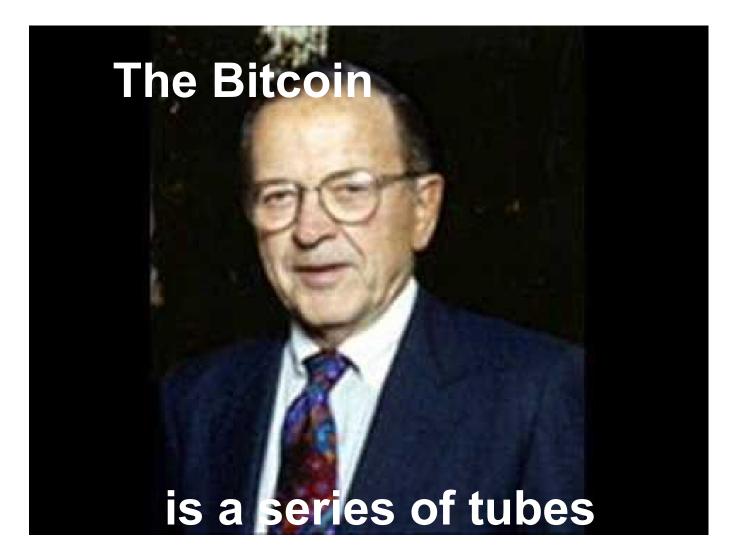
Bo Waggoner UPenn theory lunch 2017-06-16

Forewarning: this will probably contain mistakes

Agenda

- Philosophy
- What is Bitcoin (and what's a blockchain)
- Interesting issues
- History
- What is Ethereum (and what's a smart contract)

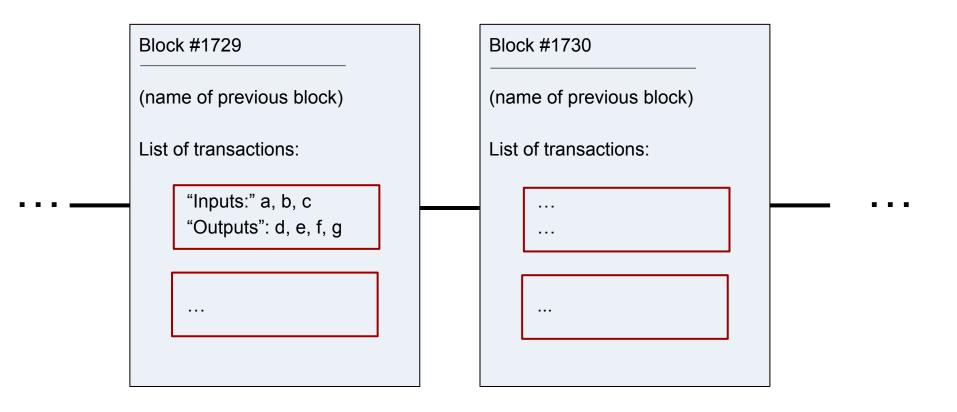
A perspective on "fiat money"


- Money is a reputation system; it links transactions over time.
- The most general such system: Given entire history, determine if a current transaction is "legal" and if so, the new state of the system.
- Cash is an incredibly simple / compressed protocol.
 - Enabled by physical, non-counterfeitable tokens; or digitally by trusted authorities.
 - (The government printing new money is just part of the protocol.)
- Without physical tokens, fiat money can still be implemented: use a more complex/memory-intensive public data structure. (list all previous transactions)

Challenges in implementing digital cash

- 1. Forgery, impersonation (easy)
 - a. Each "coin" is owned by some public key. Only the associated private key can "spend it": digitally sign a transfer to some other public key.

- 2. Digital consensus (hard)
 - a. If this were all taking place on one computer, we'd be done.
 - b. The **blockchain** aims to implement it without a central trusted authority.


The Bitcoin protocol

Bitcoin, simplified

A transaction is e.g. "5 coins from Alice to Bob".

A "block" has a set of transactions. The blockchain is a chain of ... yeah. We all keep a copy of the blockchain, representing a consensus history.

Inside a block

Block #1729

name of previous block

hash = h(k, previous block's header)

List of transactions:

...

. . .

A block is only valid if **hash** is smaller than some predefined goal.

Miner's problem: Find k so that hash <= goal.

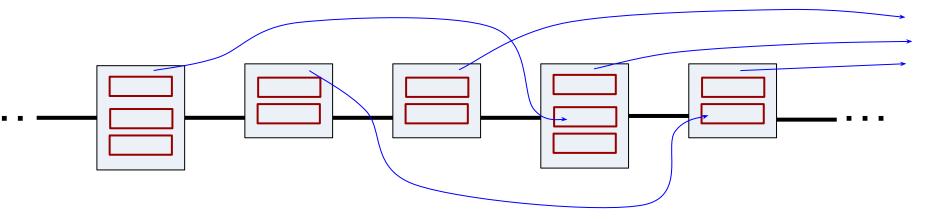
Once such a \mathbf{k} is found, miner creates and announce the new block (including in it any transactions* she wants).

Anyone can publicly announce a transaction* to be included in the next block (or hopefully soon), including "transaction fees" the miner can award themself.

Over time, "goal" decreases, making this problem harder.

*if transaction's digital signature doesn't match up, it's invalid.

"Cashflow"

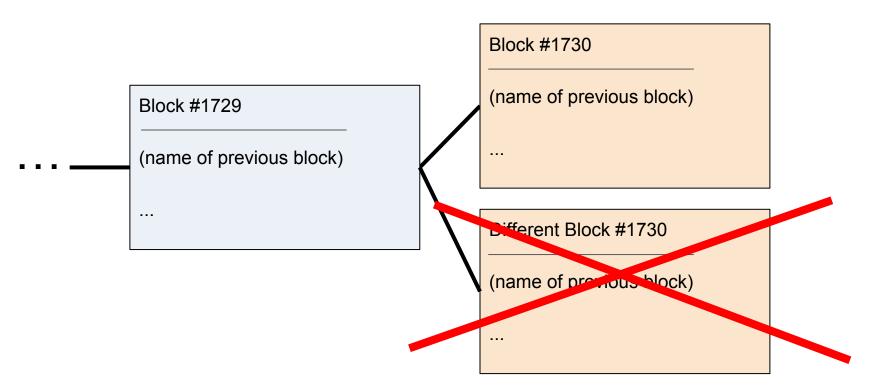

Note: Can use a different key pair for every transaction (recommended), or keep the same one.

Creation of new coins

Each block has one "output" with no "inputs": brand-new coins.

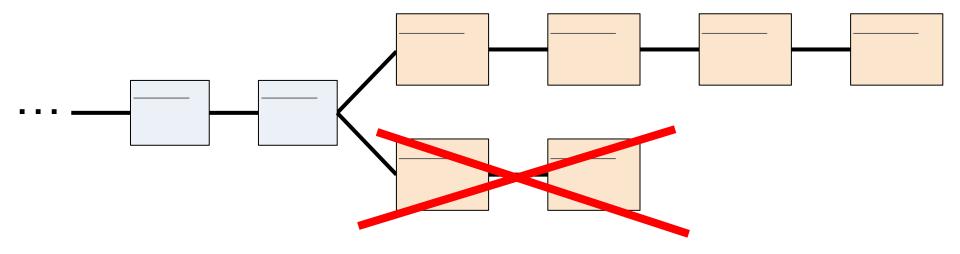
The person creating the block chooses where they go (presumably self).

The number created halves over time; total is capped.


Distributed consensus algorithm

- Every node keeps a copy of the whole blockchain.
 - (Note: "Merkle tree" is used to quickly check/verify, rather than re-reading 100+ GB each time)
- When someone else announces a new block, check that it is "valid" and add it to to the chain.

Block #1729	Block #1730	
(name of previous block)	(name of previous block)	


Distributed consensus algorithm cont'd

• If you see multiple new blocks, pick only one (preferably the older)

Distributed consensus algorithm cont'd

• More generally, if you see different versions of the chain, pick whichever version is longer.

Aside: Blockchains in general

The blockchain is a **modular** invention separate from Bitcoin.

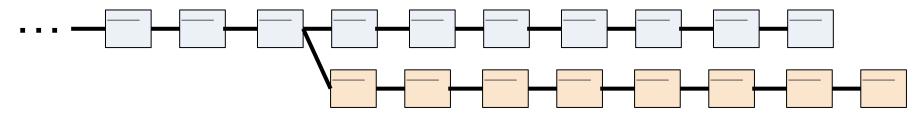
The stuff in the blocks did not have to be a list of transactions - it could have been any **dynamic data structure**.

(But you need incentives for people to mine new blocks...)

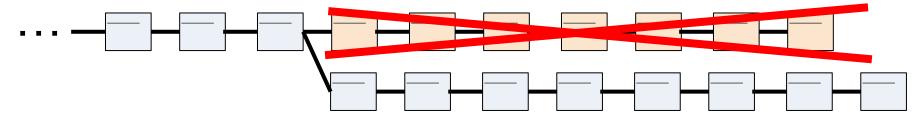
Should we put _____ on the blockchain? Use your head! Does _____ need a distributed, dynamic, consensus algorithm?

Example: my company wants to internally track history of _____. You can probably track history of _____ on a single trusted computer with a database. What would a blockchain do other than waste energy and storage?

Possible problems


Musings on the blockchain (so to speak)

- You can never be 100% certain that a spent coin is "spent"
 - e.g. with 51% of the mining power, someone can create the longest chain at will.
 - In theory, they can reverse/cancel as many transactions as they want.


Musings on the blockchain (so to speak)

- You can never be 100% certain that a spent coin is "spent"
 - e.g. with 51% of the mining power, someone can create the longest chain at will.
 - In theory, they can reverse/cancel as many transactions as they want.

Musings on the blockchain (so to speak)

- You can never be 100% certain that a spent coin is "spent"
 - e.g. with 51% of the mining power, someone can create the longest chain at will.
 - In theory, they can reverse/cancel as many transactions as they want.

- Currently: 10 mins / block on average.
 - The sooner you find out about a block, the sooner you start mining the next one.
 - (If you create one, maybe don't tell everyone else immediately.)
 - If most bitcoins are mined in big datacenters in China, you're best off mining them in your own big datacenter next door, not seconds away in the US.
- Block size:" limited # of transactions fit in a block. Competition for space ⇒
 larger transaction fees. (Issues: http://www.cs.princeton.edu/~smattw/CKWN-CCS16.pdf)

"Proof of work" vs "Proof of stake"

- Above: "proof of work" protocol for creating new blocks:
 - find the hash key, get the bitcoin and create the new block.
 - Global result: lots of "wasted" energy spent simultaneously inverting hash functions

- Alternative that burns much less energy: "Proof of stake"
 - Algorithmically designate someone or small set of people to create the next block,
 e.g. with probability proportional to number of coins owned.
 - Lots of incentive issues arise, ad-hoc solutions suggested
 - Can we make the incentives work? Open question.

History

..., and this is crazy

but here's my cryptocurrency

VEVO

so mine it, maybe?

Abbreviated history of Bitcoin

- October 2008: "Satoshi Nakamoto" publishes whitepaper (https://bitcoin.org/bitcoin.pdf). True identity remains unknown.
- January 2009: Bitcoin launched, adopted. Nakamoto has not spent any coins since then, is currently estimated to hold ~\$2.8 billion worth of Bitcoin.
- **August 2010:** Major bug exploited in bitcoin to create billions of bitcoins. The protocol is updated to fix the bug and officially "forked" to cancel those transactions.
- **September 2013:** US gov't shuts down "Silk Road", online drug marketplace, seizing 174,000 bitcoins valued at that time at \$120 million.
- **February 2014:** Mt. Gox, the largest bitcoin exchange which handled over 70% of all bitcoin transactions, suspends trading, files for bankruptcy, and announces that 850,000 bitcoins were stolen (\$450 million at that time), with most remaining "stolen" to this day.
- **Present day (mid 2017):** ~ \$40 billion worth of BTC total, estimated 3-6 million unique users; accepted by Paypal, Microsoft, Dell, many minor vendors.

Ethereum - briefly and probably incorrectly

Ethereum (as I understand it)

- Idea: use blockchain to run "consensus" computations.
- Each block can contain financial transactions (the "currency" is named Ether)
 ... or code.
- Every node maintains a copy of the Ethereum Virtual Machine.
 See a new valid block → execute its code.
- New code can "pass messages" to existing code.
- Example: one simple smart contract is an escrow: Waits until it receives a message that enough time has passed, then releases the money to the appropriate public key.

Ethereum history

We are at the launch of The DAO

famous for the ferocious and well-documented exploit which will strike from the east in the beginning of June

in three day's time.

Mark, Zamfir, and Sirer, May 2016, paraphrased

Abbreviated history of **Ethereum**

- **late 2013:** idea for Ethereum proposed by Vitalik Buterin, Russian programmer/ researcher (non-academic).
- **mid-2014:** Development and coding, supported by crowdfunding. Founders Vitalik Buterin, Gavin Wood and Jeffrey Wilcke.
- July 2015: Ethereum goes live.
- **May 2016:** "The DAO" (Decentralized Autonomous Organization) raises "\$150 million" in crowdfunding. It is implemented "on" the Ethereum blockchain with open-source code.
- **June 2016:** User extracts 1/3 of the money in the DAO exploiting unintentional behavior in the code.
- July 2016: Ethereum community decides to "fork" Ethereum: "Ethereum Classic" recognizes the legality of the heist, while the main current fork of Ethereum reverses all of those transactions, "stealing back" the money from the exploiter.
- Late 2016: Ethereum decides to "hard fork" two more times to deal with new attacks.
- **Present day:** Graphics cards becoming scarce / price hikes due to Ethereum mining. Uses/platforms built on top of Ethereum proliferating.

Possible research questions - Bo's picks

- On a blockchain, we can implement more complex "reputation" mechanisms than cash. Should we?
- (Big one in practice) Can we get the incentives right for "proof of stake" or some other alternative to "proof of work"?
- PL: develop sane, formally verified scripting languages for Ethereum (or similar platforms), so that the contract you write is the one you actually want.
- Possibly deep: At what rate should new currency be printed? Why?? In Bitcoin, can transaction fees replace mining new coins?
- What's so great about blockchains, and what alternatives could there be? Other distributed "consensus" data structures?