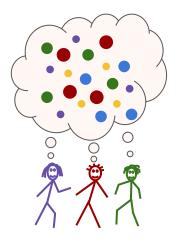
Buying and Learning from User Data, Privately

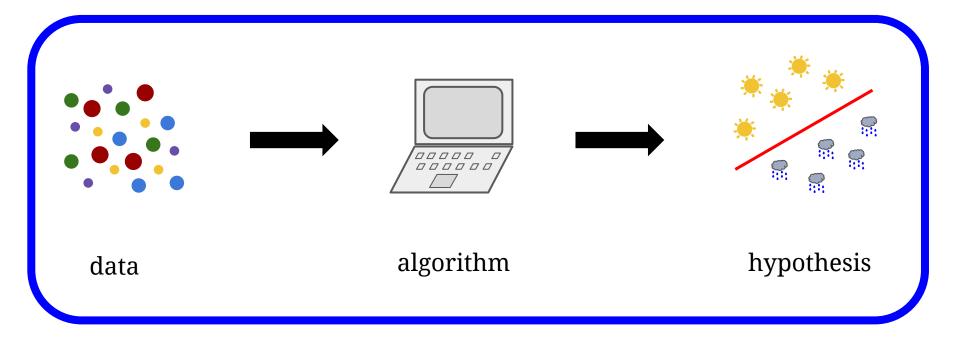


Bo Waggoner University of Pennsylvania

December 13, 2017

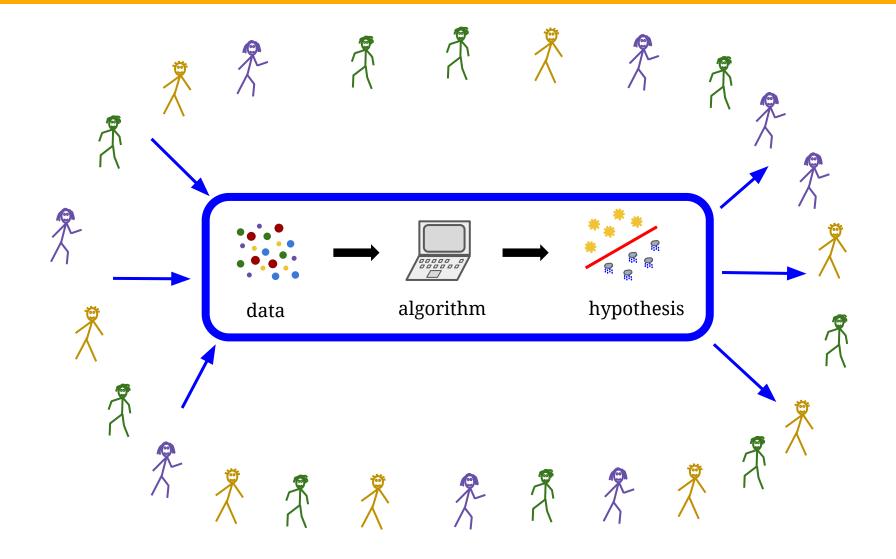
Georgetown

The machine learning paradigm



*drawing not to scale

In context



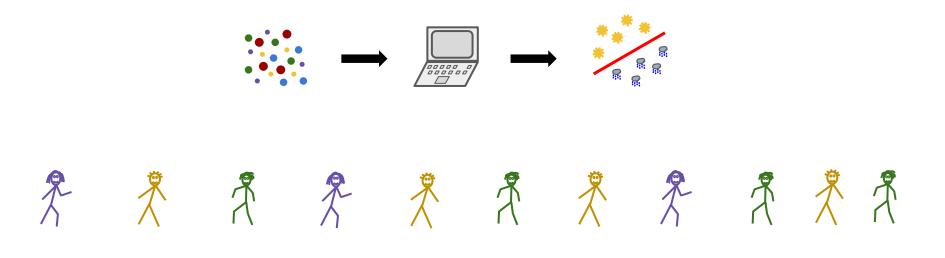
*drawing not to scale

In context

Technical and social challenges:

- privacy for data
- fairness for outcomes
- "strategic" behavior

 \rightarrow conflicts between simple, ethical, and optimal (strategic) behavior



In context

Technical and social challenges:

- privacy for data
- fairness for outcomes
- "strategic" behavior

 \rightarrow conflicts between simple, ethical, and optimal (strategic) behavior

(Hot topics at Penn!)

Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM. Katrina Ligett , Seth Neel , Aaron Roth , Bo Waggoner, and Steven Wu , NIPS 2017.

A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. Sampath Kannan 😡 Jamie Morgenstern 🔯, Aaron Roth 💽 Bo Waggoner, and Steven Wu 🗣 . (draft) 2017.

Strategic Classification from Revealed Preferences. Jinshuo Dong 🔊, Aaron Roth 🔐 Zachary Schutzman 📚 , Bo Waggoner, and Steven Wu 🧖. (draft) 2017. R

Outline

I. "Take It Or Leave It"

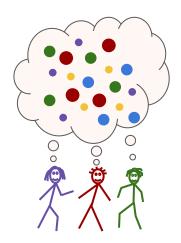
Interlude: information, privacy, and tech

- II. "Markets"
- III. Going Forward

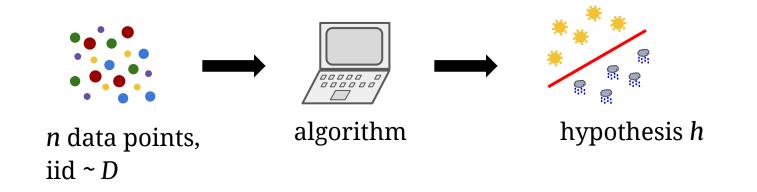
"Take it or leave it"

Low-Cost Learning via Active Data Procurement. Jacob Abernethy **3**, Yiling Chen **3**, Chien-Ju Ho **5**, and Bo Waggoner, EC 2015.

How to obtain **theoretical guarantees** for machine learning when data must be **purchased** from strategic agents?



Classic supervised learning problem



Goal: for a given loss function *loss(h, z)*, predict well on new data.

Classic supervised learning problem (cont.)

Example theorem form

Given *n* data points iid, an algorithm can produce *h* with roughly

$$\mathbb{E}$$
loss $(h, z) \leq \mathbb{E}$ loss $(h^*, z) + \sqrt{\frac{\text{VC-dim}}{n}}$

where h^* is the optimal hypothesis.

Classic supervised learning problem (cont.)

Given *n* data points iid, an algorithm can produce *h* with roughly

C-dim

n

$$\mathbb{E} loss(h, z) \leq \mathbb{E} loss(h^*, z) + \sqrt{-\frac{1}{2}}$$

where h^* is the optimal hypothesis.

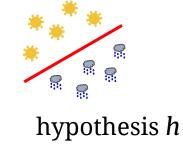
Error depends on:

- problem difficulty •
- quantity of resources

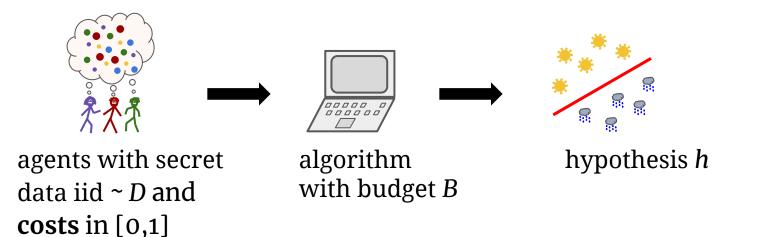
Proposed model of strategic data-holders

agents with secret data iid ~ *D* and **costs** in [0,1]

algorithm with budget *B*



Proposed model of strategic data-holders



Challenge:

- want to only purchase valuable and cheap data points...
- ...but this biases the data!

Approach:

- offer random prices skewed toward "value"
- "de-bias" (importance weighting)

Main result

Theorem^{*} (ACHW'15)

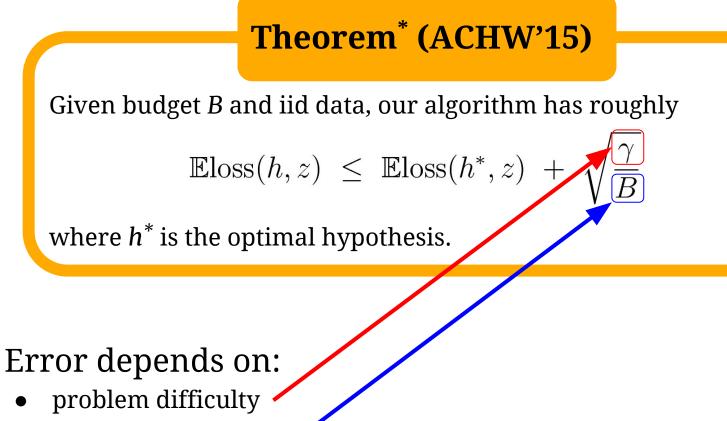
Given budget B and iid data, our algorithm has roughly

$$\mathbb{E}$$
loss $(h, z) \leq \mathbb{E}$ loss $(h^*, z) + \sqrt{\frac{\gamma}{B}}$

where h^* is the optimal hypothesis.

*Low-order terms and Lipschitz conditions apply.

Main result



• quantity of resources

*Low-order terms and Lipschitz conditions apply.

Takeaways

Model:

- people control their data
- will reveal it for at least (unknown) cost

Results:

- theoretical guarantees
- analogues of classical results in this new setting

Lots of future work!

Outline

I. "Take It Or Leave It"

Interlude: information, privacy, and tech

- II. "Markets"
- III. Going Forward

Outline

I. "Take It Or Leave It"

Interlude: information, privacy, and tech

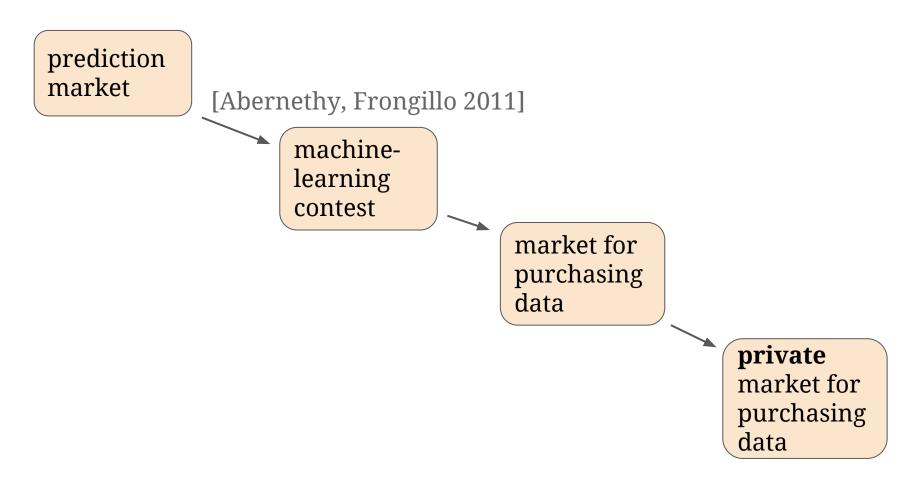
II. "Markets"

- a. Non-private construction
- b. Making it private
- c. Properties and extensions

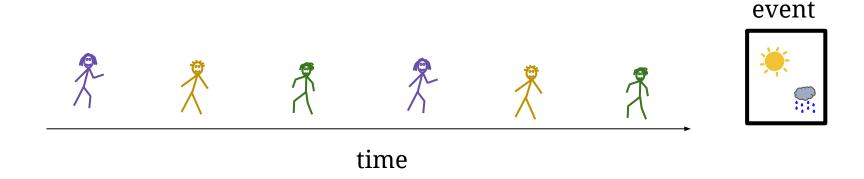
III. Going Forward

"Markets"

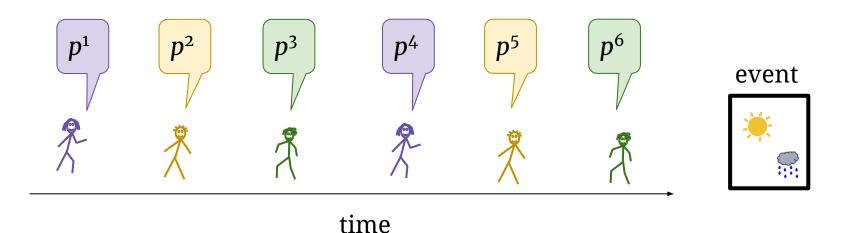
A Market Framework for Eliciting Private Data. Bo Waggoner, Rafael Frongillo 🙇 , and Jacob Abernethy 🌌. NIPS 2015.



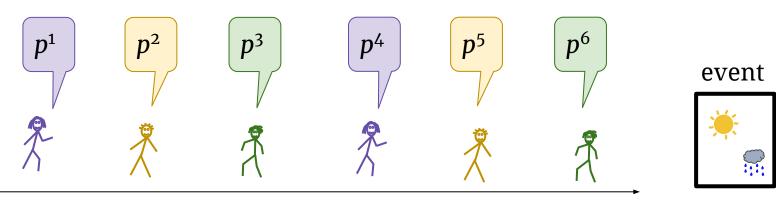
1. Designer chooses initial **public** prediction p^{0}



1. Designer chooses initial **public** prediction p^0 2. Participant t=1,..., proposes **public update** $p^{t-1} \rightarrow p^t$



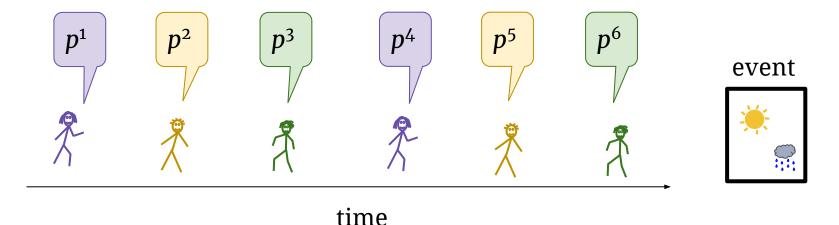
- 1. Designer chooses initial **public** prediction p^{0}
- 2. Participant *t*=1,..., proposes **public update** $p^{t-1} \rightarrow p^t$
- 3. Outcome 🌞 is observed
- 4. Reward for *t* is $S(p^t, \clubsuit) S(p^{t-1}, \clubsuit)$.



time

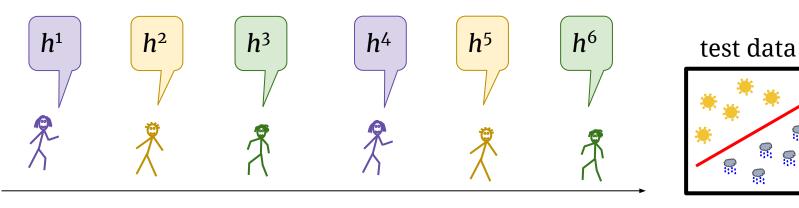
- 1. Designer chooses initial **public** prediction p^{0}
- 2. Participant *t*=1,..., proposes **public update** $p^{t-1} \rightarrow p^t$
- 3. Outcome 🌞 is observed
- 4. Reward for *t* is $S(p^t, \neq) S(p^{t-1}, \neq)$.

Example **proper scoring rule**: $S(p, \neq) = \log p(\neq)$.



SRM for machine learning

- 1. Designer chooses initial **public** hypothesis h^{0}
- 2. Participant t=1,..., proposes **public update** $h^{t-1} \rightarrow h^t$
- 3. Data point z is observed
- 4. Reward for *t* is $loss(h^{t-1}, z) loss(h^t, z)$.

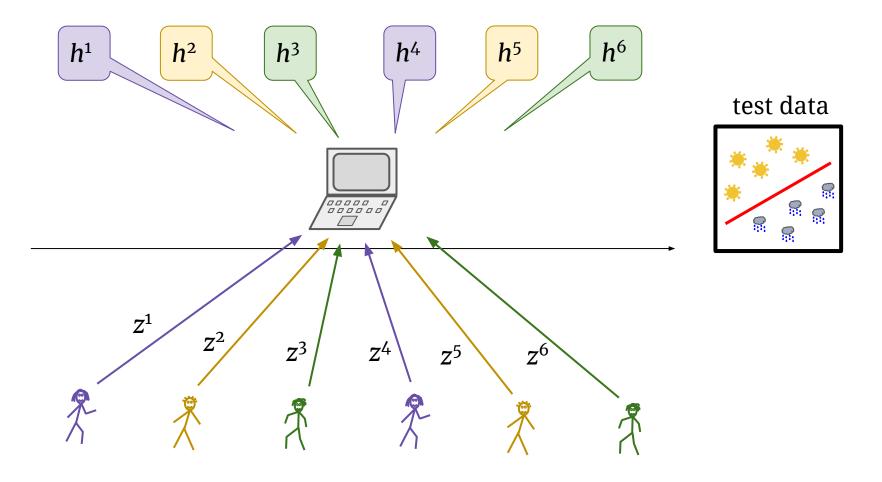


time

[Abernethy, Frongillo 2011]

Buying data, idea #1 (WFA '15)

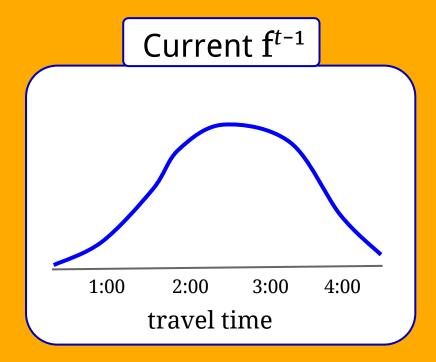
Use an **online learning algorithm** on agents' behalfs.

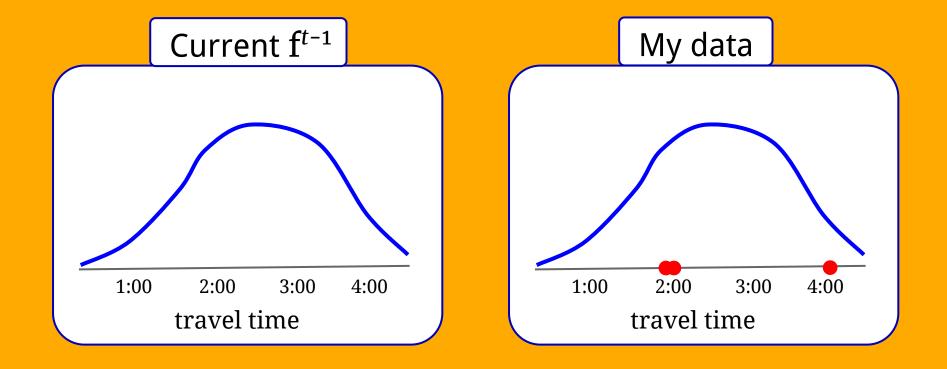


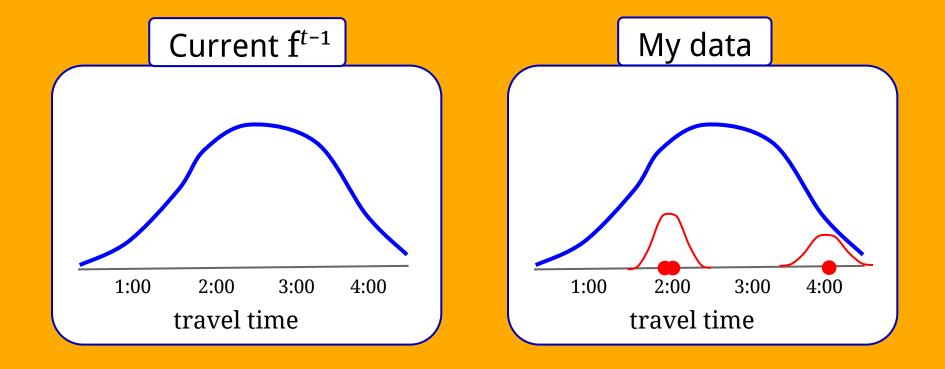
Buying data, idea #2 (WFA '15)

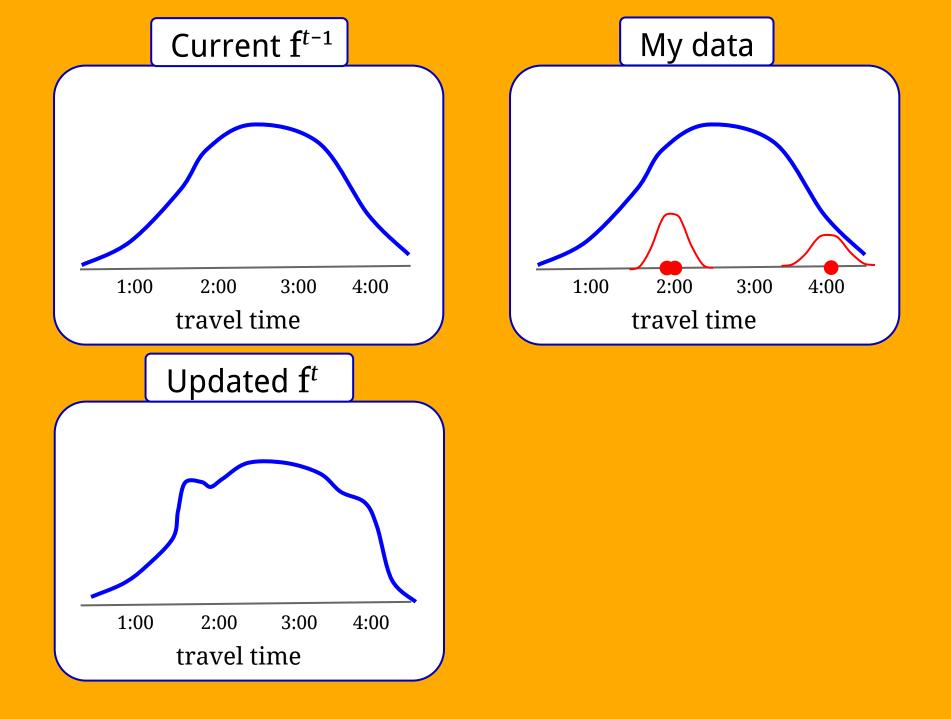
Use kernels and a market interface.

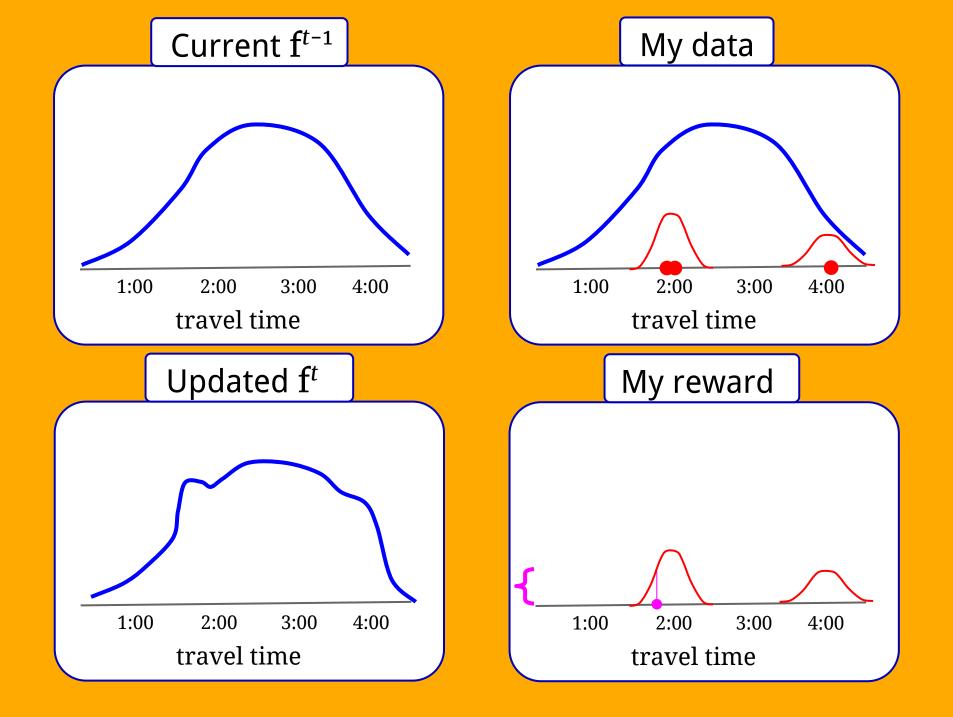
By example: predict the **travel time** from Philadelphia to D.C.











Buying data, idea #2 (WFA '15)

Use kernels and a market interface.

By example: predict the **travel time** from Philadelphia to D.C.

1. Designer chooses initial public "feature function" f^o

- 2. Participant *t*=1,..., purchases "bundle" d^t ; updates $f^{t-1} + d^t \rightarrow f^t$
- 3. Data point z is observed
- 4. Reward for *t* is $d^t(z)$.

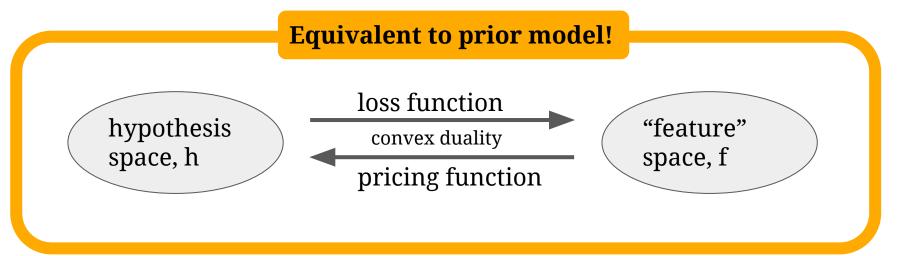
see also: [Abernethy, Chen, Wortman-Vaughan 2013]

Buying data, idea #2 (WFA '15)

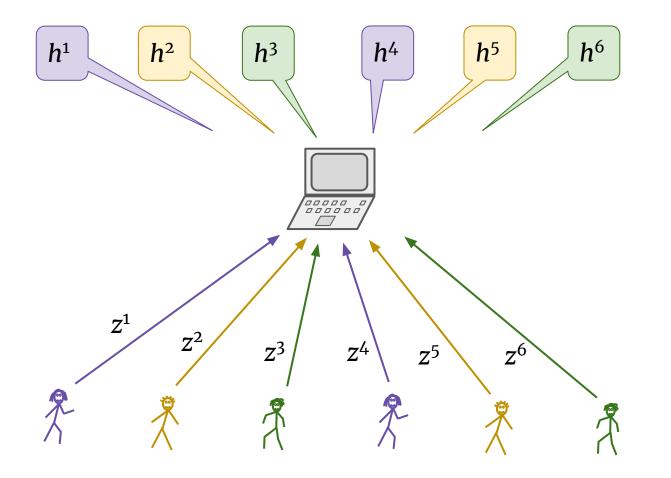
Use kernels and a market interface.

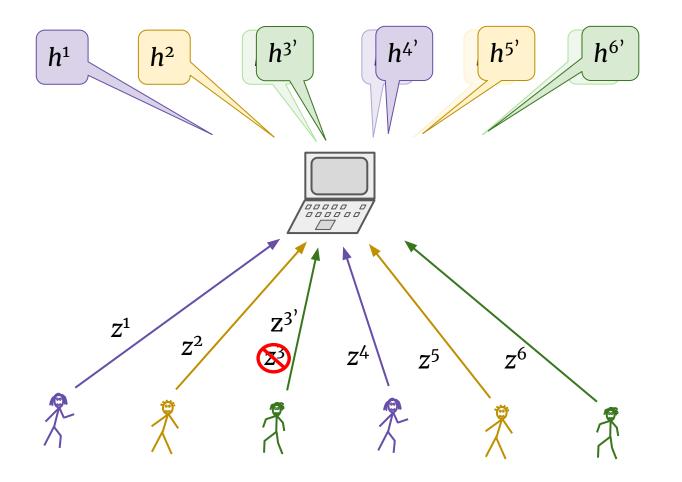
By example: predict the **travel time** from Philadelphia to D.C.

- 1. Designer chooses initial public "feature function" $f^{\scriptscriptstyle 0}$
- 2. Participant *t*=1,..., purchases "bundle" d^t ; updates $f^{t-1} + d^t \rightarrow f^t$
- 3. Data point z is observed
- 4. Reward for *t* is $d^t(z)$.



see also: [Abernethy, Chen, Wortman-Vaughan 2013]





$$\Pr[A(\text{data}) = \text{output}] \approx \Pr[A(\text{data}') = \text{output}]$$

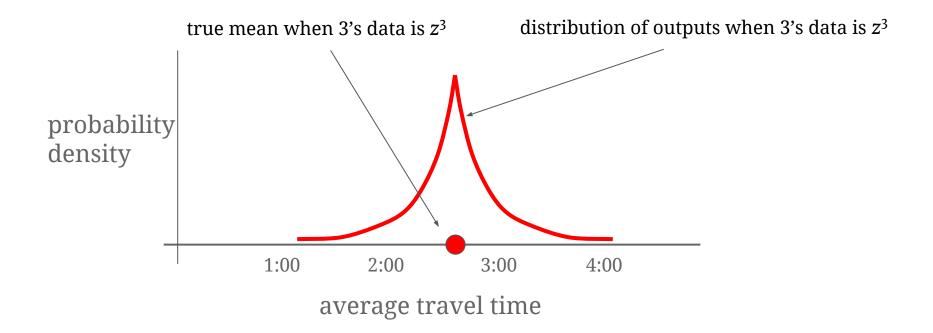
A randomized algorithm A: data \rightarrow information is ϵ -differentially private if when one piece of data changes, the output distribution is about the same.

$$\Pr\left[A(\text{data}) = \text{output}\right] \le e^{\varepsilon} \Pr\left[A(\text{data}') = \text{output}\right]$$

A randomized algorithm A: data \rightarrow information is ϵ -differentially private if when one piece of data changes, the output distribution is about the same.

$$\Pr[A(\text{data}) = \text{output}] \le e^{\varepsilon} \Pr[A(\text{data}') = \text{output}]$$

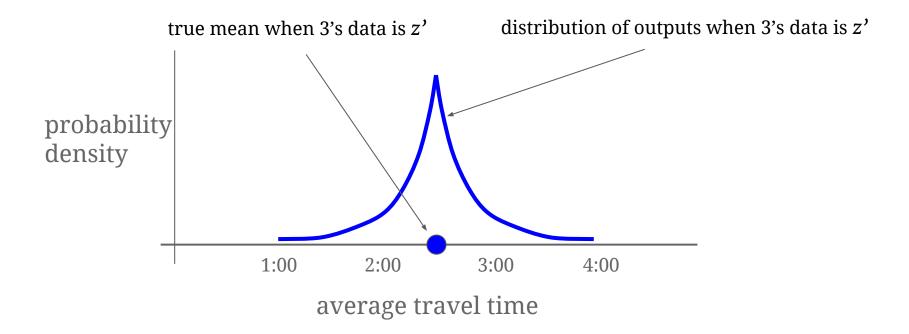
Example (average travel time): $A(x) = x + \text{Laplace}(1/\varepsilon)$



A randomized algorithm A: data \rightarrow information is ϵ -differentially private if when one piece of data changes, the output distribution is about the same.

$$\Pr[A(\text{data}) = \text{output}] \le e^{\varepsilon} \Pr[A(\text{data}') = \text{output}]$$

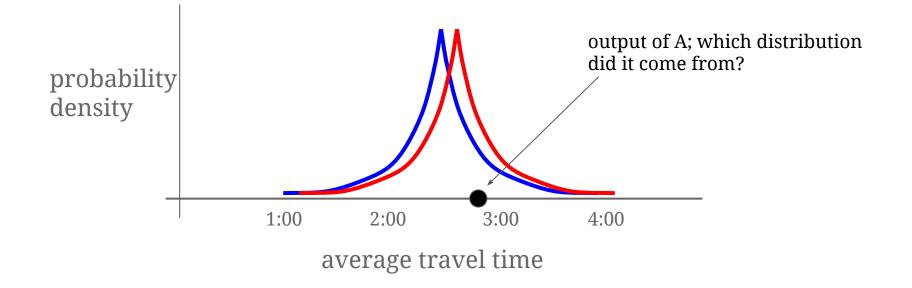
Example (average travel time): $A(z) = z + \text{Laplace}(1/\varepsilon)$



A randomized algorithm A: data \rightarrow information is ϵ -differentially private if when one piece of data changes, the output distribution is about the same.

$$\Pr\left[A(\text{data}) = \text{output}\right] \le e^{\varepsilon} \Pr\left[A(\text{data}') = \text{output}\right]$$

Example (average travel time): $A(z) = z + \text{Laplace}(1/\varepsilon)$



The privacy-preserving prediction market

1. Designer chooses initial public f^o

2. For *t*=1,...:

- a. participant purchases "bundle" d^t
- b. designer "purchases" **noisy bundle** e^t

c. updates $f^{t-1} + d^t + e^t \rightarrow f^t$

3. Test data point *z*

4. Reward $d^t(z)$, not observable by others.

The privacy-preserving prediction market

1. Designer chooses initial public f^o

2. For *t*=1,...:

- a. participant purchases "bundle" d^t
- b. designer "purchases" **noisy bundle** e^t
- c. updates $f^{t-1} + d^t + e^t \rightarrow f^t$
- 3. Test data point *z*
- 4. Reward $d^t(z)$, not observable by others.

Good: preserves privacy.

Bad: doesn't work (well).

Why: the noise overwhelms the useful information!

The privacy-preserving prediction market

1. Designer chooses initial public f^o

2. For *t*=1,...:

- a. participant purchases "bundle" d^t
- b. designer "purchases" **noisy bundle** e^t
- c. updates $f^{t-1} + d^t + e^t \rightarrow f^t$
- 3. Test data point *z*
- 4. Reward $d^t(z)$, not observable by others.

Fix: "continual observation" technique: add correlated noise over time. \rightarrow designer sometimes "sells back" noisy bundles to herself



[Dwork, Naor, Pitassi, Rothblum 2010; Chan, Shi, Song 2011]

Theorem^{*} (WFA'15)

With T participants, the market is ε -differentially private and guarantees accuracy α with high probability when **scaling loss function** by

$$O\left(\frac{\left(\log T\right)^{5/2}}{\alpha \ \varepsilon}\right)$$

Privacy for kernel functions: [Hall, Rinaldo, Wasserman 2013]

Theorem^{*} (WFA'15)

With T participants, the market is ε -differentially private and guarantees accuracy α with high probability when **scaling loss function** by

$$O\left(\frac{\left(\log T\right)^{5/2}}{\alpha \ \varepsilon}\right)$$

Implications:

- **budget** "should" be bounded by this quantity (but it's not)
- after **relatively few** participants, predictions converge

Privacy for kernel functions: [Hall, Rinaldo, Wasserman 2013]

Theorem^{*} (WFA'15)

With T participants, the market is ε -differentially private and guarantees accuracy α with high probability when **scaling loss function** by

 $O\left(\frac{\left(\log T\right)^{5/2}}{\alpha \ \varepsilon}\right)$

Theorem (Cummings, Pennock, Wortman Vaughan 2016)

The private prediction market **cannot** have bounded budget! \rightarrow Noisy bundles + smart participants = bad news.

Theorem^{*} (WFA'15)

With T participants, the market is ε -differentially private and guarantees accuracy α with high probability when **scaling loss function** by

$$O\left(\frac{\left(\log T\right)^{5/2}}{\alpha \ \varepsilon}\right)$$

Theorem^{*} (WFA 2017)

By introducing a small transaction fee:

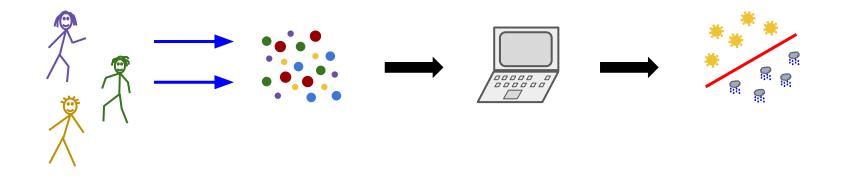
- Budget is bounded independent of *T*
- Accuracy guarantee α is maintained
- Privacy guarantee ε is maintained
- If prices are wrong by 2α , participants have incentive to update.

Related work on elicition and markets

- Strategic participation; timing.
 Informational Substitutes. Yiling Chen 2 and Bo Waggoner, FOCS 2016.
- Predicting higher-order relationships in data.
 Multi-Observation Elicitation. Sebastian Casalaina-Martin , Rafael Frongillo , Tom Morgan , and Bo Waggoner. COLT 2017.
- Usability and "market-like" properties. *An Axiomatic Study of Scoring Rule Markets*. Rafael Frongillo 🔊 and Bo Waggoner. ITCS 2018.

Recap: properties of these mechanisms

- Incentives aligned
- Privacy-preserving
- End to end



Practical challenges remaining: many!

Outline

I. "Take It Or Leave It"

Interlude: information, privacy, and tech

- II. "Markets"
- III. Going Forward

What makes information **valuable**?

What makes information **valuable**?

Information creates value by changing (improving) our decisions

See also: [Howard 1966], Informational Substitutes. Yiling Chen Sea and Bo Waggoner, FOCS 2016.

"The best way to control someone's actions is to **control the information** upon which he makes his decisions."

Steven Brust, author

"The best way to control someone's actions is to **control the information** upon which he makes his decisions."

Steven Brust, author

World's most "valuable" companies

(one probably-wrong ranking I saw online)

- 1. Apple 📹
- 2. Alphabet Google
- 3. Microsoft 📕
- 4. Amazon 🛃
- 5. Berkshire Hathaway
- 6. Facebook **f**

World's most "valuable" companies

(one probably-wrong ranking I saw online)

- 1. Apple 📹
- 2. Alphabet Google
- 3. Microsoft
- 4. Amazon a
- 5. Berkshire Hathaway
- 6. Facebook

Value is **entirely** (**partially**) from:

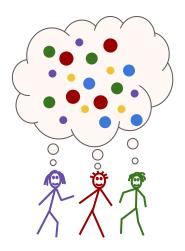
- Our data
- Our *attention*

...via non-monetary transactions!

Future directions

To understand these systems, and engineer better ones:

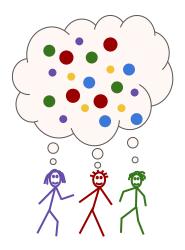
- Value of information to people and algorithms
- Microfounding the costs of privacy loss
- Exposure to (mis)information; **persuasion**
- More end-to-end systems for buying + learning from data!



Future directions

To understand these systems, and engineer better ones:

- Value of information to people and algorithms
- Microfounding the costs of privacy loss
- Exposure to (mis)information; **persuasion**
- More end-to-end systems for buying + learning from data!



Thanks!