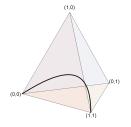
Multi-Observation Elicitation



Sebastian Casalaina-Martin Rafael Frongillo Tom Morgan **Bo Waggoner**

Colorado Colorado Harvard UPenn

July 2017

Background: Properties of distributions

Property or *statistic* of a probability distribution:

 $\Gamma: \Delta_{\mathcal{Y}} \to \mathcal{R}$

Examples:

$$\begin{split} & \Gamma(p) = \mathbb{E}_{Y \sim p} Y & \text{mean} \\ & \Gamma(p) = \sum_{y} p(y) \log \frac{1}{p(y)} & \text{entropy} \\ & \Gamma(p) = \operatorname{argmax}_{y} p(y) & \text{mode} \\ & \Gamma(p) = \mathbb{E}_{Y \sim p} (Y - \mathbb{E} Y)^2 & \text{variance} \end{split}$$

If we minimize expected loss, what do we get?

If we minimize **expected loss** under a distribution p, what **property** of p do we get?

$$r^* = \mathop{\mathrm{argmin}}_{r \in \mathcal{R}} \quad \mathop{\mathbb{E}}_{Y \sim p} \ell(r, Y) \qquad \qquad \text{minimize loss}$$

If we minimize **expected loss** under a distribution p, what **property** of p do we get?

$$r^* = \operatorname*{argmin}_{r \in \mathcal{R}} \ \mathop{\mathbb{E}}_{Y \sim p} \ell(r, Y)$$
 minimize loss $\Gamma(p) = \psi(r^*)$ link

If we minimize **expected loss** under a distribution p, what **property** of p do we get?

$$r^* = \operatorname*{argmin}_{r \in \mathcal{R}} \ \mathop{\mathbb{E}}_{Y \sim p} \ell(r, Y)$$
 minimize loss $\Gamma(p) = \psi(r^*)$ link

Motivation: statistically consistent losses.

- Finite property space: classification, ranking, ...
- $\Gamma(p) \in \mathbb{R}^d$: regression, ...

If we minimize **expected loss** under a distribution p, what **property** of p do we get?

$$r^* = \operatorname*{argmin}_{r \in \mathcal{R}} \ \mathop{\mathbb{E}}_{Y \sim p} \ell(r, Y)$$
 minimize loss $\Gamma(p) = \psi(r^*)$ link

Examples:

- The mean is elicited by squared loss.
- Variance: elicit mean and second moment, then link.
- Any property is a link from the whole distribution ... but dimension of prediction r is unbounded...

This paper

What if the loss takes **multiple** i.i.d. observations?

$$r^* = \underset{r \in \mathcal{R}}{\operatorname{argmin}} \quad \underset{Y_1, \dots, Y_m \sim p}{\mathbb{E}} \ell(r, Y_1, \dots, Y_m)$$

This paper

What if the loss takes **multiple** i.i.d. observations?

$$r^* = \operatorname*{argmin}_{r \in \mathcal{R}} \quad \underset{Y_1, \dots, Y_m \sim p}{\mathbb{E}} \ell(r, Y_1, \dots, Y_m)$$

Examples:

- Var(p) = argmin_r $\mathbb{E}\left(r \frac{1}{2}(Y_1 Y_2)^2\right)^2$.
 - 2-norm: unbounded dimension \rightarrow 1 dimension, 2 observations!

This paper

What if the loss takes **multiple** i.i.d. observations?

$$r^* = \operatorname*{argmin}_{r \in \mathcal{R}} \quad \underset{Y_1, \dots, Y_m \sim p}{\mathbb{E}} \ell(r, Y_1, \dots, Y_m)$$

Examples:

- Var(p) = argmin_r $\mathbb{E}\left(r \frac{1}{2}(Y_1 Y_2)^2\right)^2$.
 - 2-norm: unbounded dimension \rightarrow 1 dimension, 2 observations!

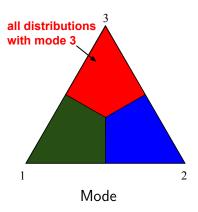
Motivating applications:

- Crowd labeling
- Numerical simulations climate science, engineering, ...
- Regression?

Key concepts from prior research

Elicitable properties have convex level sets, linear structures.

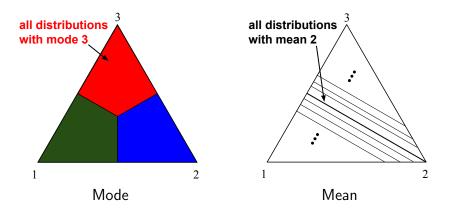
Simplex on $\mathcal{Y} = \{1, 2, 3\}$:



Key concepts from prior research

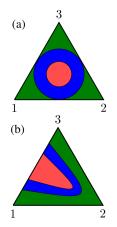
Elicitable properties have convex level sets, linear structures.

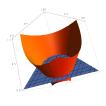
Simplex on $\mathcal{Y} = \{1, 2, 3\}$:

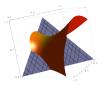


Results (1) Geometric approach

Summary: k-observation level sets \leftrightarrow zeros of degree-k polynomials







Results (2) Upper and lower bounds.

Key example: (integer) k-norm
$$(p) = \left(\sum_y p(y)^k\right)^{1/k}$$
.

Idea: $\mathbf{1}[Y_1 = \cdots = Y_k]$ is an **unbiased estimator** for $||p||_k^k$.

Results (2) Upper and lower bounds.

Key example: (integer) *k*-norm
$$(p) = \left(\sum_{y} p(y)^k\right)^{1/k}$$
.

Idea: $\mathbf{1}[Y_1 = \cdots = Y_k]$ is an **unbiased estimator** for $||p||_k^k$.

Loss
$$(r, Y_1, ..., Y_k) = (r - \mathbf{1}[Y_1 - \dots = Y_k])^2$$
.
Link $(r) = r^{1/k}$.

Results (2) Upper and lower bounds.

Key example: (integer)
$$k ext{-norm}(p) = \left(\sum_y p(y)^k
ight)^{1/k}$$

Idea: $\mathbf{1}[Y_1 = \cdots = Y_k]$ is an **unbiased estimator** for $||p||_k^k$.

Loss
$$(r, Y_1, ..., Y_k) = (r - \mathbf{1}[Y_1 - \dots = Y_k])^2$$
.
Link $(r) = r^{1/k}$.

- Similar approach for products of expectations.
- Lower bound: k-norm requires k observations.
- Lower bound approach is general (algebraic geometry).

.

Why could this be useful?

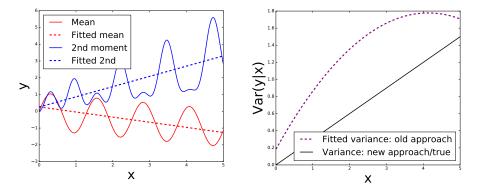
Problem: Regress x vs Var(y|x).

Why could this be useful?

Problem: Regress x vs Var(y|x). **Old approach:** Regress on mean and second moment, then link.

Why could this be useful?

Problem: Regress x vs Var(y|x). **Old approach:** Regress on mean and second moment, then link.



 \implies Requires good modeling and sufficient data for these (unimportant) proxies!

Future directions

Elicitation frontiers and (d, m)-elicitability

In paper: central moments

Regression

In paper: preliminary results

Additional useful examples e.g. expected max of k draws; risk measures

Lots of COLT questions for multi-observation losses!

Thanks!

Aside - comparison to property testing

Property Testing

- Algorithmic problem
- Distribution p is initially unknown
- Algorithm draws samples to estimate property or test hypothesis

Aside - comparison to property testing

Property Testing

- Algorithmic problem
- Distribution p is initially unknown
- Algorithm draws samples to estimate property or test hypothesis

Property Elicitation

- Existential questions, e.g....
- ... does there exist a one-dim. loss function eliciting variance? no
- ... two-dimensional?
- ... describe all losses directly eliciting the mean *divergences*

ves