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Property or statistic of a probability distribution:

[': Ay — R
Examples:
" I'(p) =Ey, Y mean
= I(p) = Zy p(y) log @ entropy
= I'(p) = argmax, p(y) mode
" D(p) =Ey.,(Y —EY)? variance
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If we minimize expected loss, what do we get?
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If we minimize expected loss under a distribution p,
what property of p do we get?

= argmin E f(?“ Y) minimize loss
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If we minimize expected loss under a distribution p,
what property of p do we get?

rt = argmin E f(?“ Y) minimize loss
reR

D(p) = (") ik

Motivation: statistically consistent losses.
= Finite property space: classification, ranking, ...
= T'(p) € R regression, ...
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If we minimize expected loss under a distribution p,
what property of p do we get?

r* = argmin E f(?” Y) minimize loss
re€R

C(p) = (r") link

Examples:
= The mean is elicited by squared loss.
= Variance: elicit mean and second moment, then link.

= Any property is a link from the whole distribution . ..
but dimension of prediction r is unbounded. ..
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What if the loss takes multiple i.i.d. observations?

*

r* = argmin E 4rYy,...,Y,)
TER Yl,...,YmNp
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Examples:
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What if the loss takes multiple i.i.d. observations?

*

r* = argmin E {rYy,...,Y,)
TGR Yl,...,YmNp

Examples:
= Var(p) = argmin, E (r — 3(V; — Y2)2)2.
® 2-norm: unbounded dimension — 1 dimension, 2 observations!

Motivating applications:
= Crowd labeling
® Numerical simulations climate science, engineering, . ..

= Regression?
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Key concepts from prior research
Elicitable properties have convex level sets, linear structures.

Simplex on Y = {1, 2, 3}:

all distributions
with mode 3

Mode
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Key concepts from prior research

Elicitable properties have convex level sets, linear structures.

Simplex on Y = {1, 2, 3}:

all distributions
with mode 3

Mode

all distributions
with mean 2

Mean
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Summary: k-observation level sets <+ zeros of degree-k polynomials

3

1 2
3

(b) I

1 2
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Key example: (integer) k-norm(p) = (Zy p(y)k>

Idea: 1[Y; = --- = ;] is an unbiased estimator for ||p||}.
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Key example: (integer) k-norm(p) = (Zy p(y)k> .
Idea: 1[Y; = --- =Y}] is an unbiased estimator for ||p||}.

2
Loss(r, Yi,...,Y:) = (r— 1Y, —---:Yk]) .
Link(r) = r'/k.
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1/k
Key example: (integer) k-norm(p) = (Zy p(y)k> :

Idea: 1[Y; = --- =Y}] is an unbiased estimator for ||p||}.
2
Loss(r, Yi,...,Y:) = (r— 1Y, — - = Yk]) .

Link(r) = r'/k.

= Similar approach for products of expectations.
= Lower bound: k-norm requires k observations.

= Lower bound approach is general (algebraic geometry).
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Problem: Regress z vs Var(y|x).
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Problem: Regress z vs Var(y|x).
Old approach: Regress on mean and second moment, then link.
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Problem: Regress z vs Var(y|x).
Old approach: Regress on mean and second moment, then link.

— Mean
--- Fitted mean
— 2nd moment
st| ---  Fitted 2nd

________

--- Fitted variance: old approach
— Variance: new approach/true

1 2 3 a

X

= Requires good modeling and sufficient data
for these (unimportant) proxies!
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= Elicitation frontiers and (d, m)-elicitability
In paper: central moments

= Regression
In paper: preliminary results

= Additional useful examples
e.g. expected max of k draws; risk measures

» Lots of COLT questions for multi-observation losses!

Thanks!
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= Algorithmic problem

= Distribution p is initially unknown

= Algorithm draws samples to estimate property or test hypothesis
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= Algorithmic problem
= Distribution p is initially unknown

= Algorithm draws samples to estimate property or test hypothesis

= Existential questions, e.g.. ..

= ...does there exist a one-dim. loss function eliciting variance? no
® ...two-dimensional? yes

= .. .describe all losses directly eliciting the mean divergences
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