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Background: Properties of distributions

Property or statistic of a probability distribution:

Γ : ∆Y → R
Examples:

Γ(p) = EY∼p Y mean

Γ(p) =
∑

y p(y) log 1
p(y)

entropy

Γ(p) = argmaxy p(y) mode

Γ(p) = EY∼p(Y − EY )2 variance
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Background: Elicitation (1)

If we minimize expected loss, what do we get?

r∗ = argmin
r∈R

E
Y∼p

`(r, Y ) minimize loss

Γ(p) = ψ(r∗) link

Motivation: statistically consistent losses.

Finite property space: classification, ranking, . . .

Γ(p) ∈ Rd: regression, . . .
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Background: Elicitation (2)

If we minimize expected loss under a distribution p,
what property of p do we get?

r∗ = argmin
r∈R

E
Y∼p

`(r, Y ) minimize loss

Γ(p) = ψ(r∗) link

Examples:

The mean is elicited by squared loss.

Variance: elicit mean and second moment, then link.

Any property is a link from the whole distribution . . .
but dimension of prediction r is unbounded. . .
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This paper

What if the loss takes multiple i.i.d. observations?

r∗ = argmin
r∈R

E
Y1,...,Ym∼p

`(r, Y1, . . . , Ym)

Examples:

Var(p) = argminr E
(
r − 1

2
(Y1 − Y2)2

)2
.

2-norm: unbounded dimension → 1 dimension, 2 observations!

Motivating applications:

Crowd labeling

Numerical simulations climate science, engineering, . . .

Regression?
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Key concepts from prior research

Elicitable properties have convex level sets, linear structures.

Simplex on Y = {1, 2, 3}:

1 2

3all distributions 
with mode 3

Mode

1 2

3all distributions 
with mean 2

Mean
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Results (1)
Geometric approach

Summary: k-observation level sets ↔ zeros of degree-k polynomials
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Results (2)
Upper and lower bounds.

Key example: (integer) k-norm(p) =
(∑

y p(y)k
)1/k

.

Idea: 1[Y1 = · · · = Yk] is an unbiased estimator for ‖p‖kk.

Loss(r, Y1, . . . , Yk) =
(
r − 1[Y1 − · · · = Yk]

)2
.

Link(r) = r1/k.

Similar approach for products of expectations.

Lower bound: k-norm requires k observations.

Lower bound approach is general (algebraic geometry).
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Why could this be useful?

Problem: Regress x vs Var(y|x).

Old approach: Regress on mean and second moment, then link.
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Fitted variance: old approach

Variance: new approach/true

=⇒ Requires good modeling and sufficient data
for these (unimportant) proxies!
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Future directions

Elicitation frontiers and (d,m)-elicitability
In paper: central moments

Regression
In paper: preliminary results

Additional useful examples
e.g. expected max of k draws; risk measures

Lots of COLT questions for multi-observation losses!

Thanks!
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Aside - comparison to property testing

Property Testing

Algorithmic problem

Distribution p is initially unknown

Algorithm draws samples to estimate property or test hypothesis

Property Elicitation

Existential questions, e.g.. . .

. . . does there exist a one-dim. loss function eliciting variance? no

. . . two-dimensional? yes

. . . describe all losses directly eliciting the mean divergences

11 / 11



Aside - comparison to property testing

Property Testing

Algorithmic problem

Distribution p is initially unknown

Algorithm draws samples to estimate property or test hypothesis

Property Elicitation

Existential questions, e.g.. . .

. . . does there exist a one-dim. loss function eliciting variance? no

. . . two-dimensional? yes

. . . describe all losses directly eliciting the mean divergences

11 / 11


