Scoring Rule Markets as Machine Learning Contests

Rafael Frongillo **Bo Waggoner**

Colorado, Boulder University of Pennsylvania

and in part Jacob Abernethy

Georgia Tech

CiML December 2017

Collaboration

Outline

Outline

A collaborative mechanism for crowdsourcing prediction problems, Abernethy & Frongillo, NIPS 2011

"Scoring Rule Market (SRM)"

A collaborative mechanism for crowdsourcing prediction problems, Abernethy & Frongillo, NIPS 2011

"Scoring Rule Market (SRM)":

1. Designer chooses initial **public** hypothesis h⁰

A collaborative mechanism for crowdsourcing prediction problems, Abernethy & Frongillo, NIPS 2011

"Scoring Rule Market (SRM)":

- 1. Designer chooses initial **public** hypothesis h⁰
- 2. Participant t=1,..., proposes **public update** $h^{t-1} \rightarrow h^t$

A collaborative mechanism for crowdsourcing prediction problems, Abernethy & Frongillo, NIPS 2011

"Scoring Rule Market (SRM)":

- 1. Designer chooses initial **public** hypothesis h⁰
- 2. Participant t=1,..., proposes **public update** $h^{t-1} \rightarrow h^t$
- 3. Validation set D revealed

A collaborative mechanism for crowdsourcing prediction problems, Abernethy & Frongillo, NIPS 2011

"Scoring Rule Market (SRM)":

- 1. Designer chooses initial **public** hypothesis h⁰
- 2. Participant t=1,..., proposes **public update** $h^{t-1} \rightarrow h^t$
- 3. Validation set D revealed
- 4. Reward for t is $L(h^{t-1}, D) L(h^t, D)$

Outline

A market framework for eliciting private data, Waggoner, Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:

1. Designer chooses "feature function" f^0

A market framework for eliciting private data, Waggoner, Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:

- 1. Designer chooses "feature function" f^0
- 2. Each t=1,..., updates $f^{t-1} \rightarrow f^t$ and pays $C(f^t) C(f^{t-1})$

A market framework for eliciting private data, Waggoner, Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:

- 1. Designer chooses "feature function" $f^{0} \label{eq:feature}$
- 2. Each t=1,..., updates $f^{t-1} \rightarrow f^t$ and pays $C(f^t) C(f^{t-1})$
- 3. Validation set revealed

A market framework for eliciting private data, Waggoner, Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:

- 1. Designer chooses "feature function" $f^{0} \label{eq:feature}$
- 2. Each t=1,..., updates $f^{t-1} \rightarrow f^t$ and pays $C(f^t) C(f^{t-1})$
- 3. Validation set revealed
- 4. Reward for t is $\sum_{x,y\in D} df^t(x,y)$

A market framework for eliciting private data, Waggoner, Frongillo, and Abernethy, NIPS 2015.

Cost function based markets:

- 1. Designer chooses "feature function" f^0
- 2. Each t=1,..., updates $f^{t-1} \rightarrow f^t$ and pays $C(f^t) C(f^{t-1})$
- 3. Validation set revealed

4. Reward for t is
$$\sum_{x,y\in D} df^t(x,y)$$

Fact (extension of prior results): Cost function based with RKHS F is equivalent to SRM with a Bregman divergence-based loss function.

Outline

Axiomatic investigations

An axiomatic study of scoring rule markets. Frongillo and Waggoner, ITCS 2018.

When/why are SRMs (collaborative contests) effective?

Plan:

- Introduce axioms
- Show examples where they are violated → demonstrate why they're desirable
- Characterize satisfaction of the axioms

Define **liability:** participant's worst-case payment.

Define **liability:** participant's worst-case payment.

Bounded trader budget:

Can make updates with arbitrarily small liability. \rightarrow market can scale relative to participants

Define **liability:** participant's worst-case payment.

Bounded trader budget:

Can make updates with arbitrarily small liability. \rightarrow market can scale relative to participants

Trade neutralization:

Given a previous update yielding liability d, there exists an update that yields <u>constant</u> net liability < d.

 \rightarrow can sell the previous contract back for a nontrivial price

Define **liability:** participant's worst-case payment.

Bounded trader budget:

Can make updates with arbitrarily small liability. \rightarrow market can scale relative to participants

Trade neutralization:

Given a previous update yielding liability d, there exists an update that yields constant net liability < d. \rightarrow can sell the previous contract back for a nontrivial price

Weak neutralization:

Given a previous update yielding liability d, there exists an update that yields net liability < d.

Axioms cannot be satisfied for this loss

⇒ collaborative mechanism <u>in</u>effective

Axioms can be satisfied

⇒ collaborative mechanism effective

The wind tomorrow will most likely blow from the:

- North?
- East?
- South?
- West?
- Calm?

Using: 0-1 loss.

Conjecture (B. Dylan, 1965):

"You don't need a weatherman to know which way the wind blows."

Conjecture (B. Dylan, 1965): "You don't need a weatherman to know which way the wind blows."

Theorem (Frongillo, Waggoner 2018): Actually, you kinda do.

Conjecture (B. Dylan, 1965): "You don't need a weatherman to know which way the wind blows."

Theorem (Frongillo, Waggoner 2018): No "scoring-rule market" for categorical classification can satisfy:

"Bounded trader budget"
 ⇒ cannot reach consensus

- nor "(weak) neutralization".
 - ⇒ participants cannot improve or "cash out"

It's not all bad

Corrected conjecture:

You don't need a weatherman to know the wind's *velocity* via a *surrogate loss*.

Example: Median or quantiles

participants

Example: Median or quantiles

participants

Theorem:

All "scoring-rule markets" for quantiles:

- satisfy "bounded trader budget"
- but not "(weak) neutralization".

Satisfying trade neutralization

Theorem:

If a scoring-rule market satisfies "trade neutralization":

- it can be written as a **cost-function based** market
- it elicits a (discretized) expectation
 i.e. minimizes a Bregman-divergence loss function.

Satisfying trade neutralization

Theorem:

If a scoring-rule market satisfies "trade neutralization":

- it can be written as a **cost-function based** market
- it elicits a (discretized) expectation
 i.e. minimizes a Bregman-divergence loss function.

Theorem:

For any Bregman-divergence loss function (mean), there exists a cost-function based market satisfying all axioms.

Other possibilities

Some markets satisfy weak but not strong neutralization! \rightarrow Exciting direction for investigation.

Example: ratio of expectations, e.g. EX/EY

- Not cost-function based (no trade neutralization)
- But can be written "almost" as cost function...
 ... and satisfies weak neutralization!

"Pay" (Y)(C(f^{t}) - C(f^{t-1})) "Reward" $\sum_{x,y\in D} f^{t}(X) - f^{t-1}(X)$

Outline

Takeaways

When is the collaborative framework good?

- Parametric form chosen, just need to "buy data"
- Participants with diverse knowledge; non-experts
- Divergence-based losses and means
- (e.g. surrogate losses)

Thanks!

Other Axioms

Incentive compatibility:

Update at each time defines a valid hypothesis; optimal update is to minimize (some) loss function.

Path independence:

Agents cannot gain by making multiple reports in a row.

Theorem:

IC + PI ⇔ "scoring rule markets" (collaborative contests).

cf Abernethy, Chen, Wortman-Vaughan 2013