Local DP for Evolving Data

Matthew Joseph Aaron Roth Jonathan Ullman **Bo Waggoner** May 2018

Motivating problem

- Each agent receives a piece of data in rounds t = 1,...,T
 e.g. a bit
- Accuracy goal: maintain accurate statistics
 e.g. average of agents' bits at the current time
- Privacy guarantee: over entire time horizon in local model agents hold their data; all communications they make are d.p.

One approach: randomized response on each t separately. Accuracy degrades polynomially in T

If data changes are **slow** or **rare**, we hope to do better!

Our setting

Stochastic setting: data is drawn from a distribution. **Assumption 1:** users all draw from the same distribution! Agent i's bit at time t is $b_i^t \sim Bernoulli(p^t)$

Examples: auditing gambling systems, product defect rates. *(contrived?)*

Assumption 2: distributions change only k times out of T rounds. \implies for fixed ε , accuracy "should" only degrade with k.

Our approach

(1) split rounds into **epochs**:

- Within an epoch, users aggregate their own data.
 → obtains estimate of distribution during that epoch
- After each epoch, users report to the center.
- Center publishes accurate statistics after each epoch.

(2) Use a consensus protocol to detect changes:

- Users who detect a significant change in distribution vote YES using randomized response
- If enough YES votes, center initiates a global update estimated distributions are reported and aggregated with RR
- W.h.prob, agents only vote/update $\Theta(k)$ times

Key technical challenge

If a small change occurs:

- Accuracy is not affected...
- ... but privacy may be!

... if it were, an update would trigger YES voters are repeatedly ignored

Solution: synchronized intensity-frequency protocol.

If you detect a _____ significant change, vote YES, but only if...

- very: always vote YES.
- somewhat less: only if $t \mod 2 = 0$.
- even less: only if $t \mod 4 = 0$.
- ...: only if $t \mod 2^{\ell} = 0$.
- ... almost insignificant: only if t = 0 or T/2.

Why does it work?

If you detect a very significant change, you can be confident...

- not: many others also did...
- **but:** many others detected a **somewhat less** significant change!
- \implies by the time you vote twice, a vote will succeed.
- Once a vote succeeds, a global update occurs k changes ⇒ O(k) YES votes and updates

Less-frequent turtles all the way down!

Results summary

Theorem (Privacy)

Each user is guaranteed ε -local differential privacy.

Holds without any assumptions.

Theorem (Accuracy)

With high probability, when epochs are of length ℓ and n users, global estimate of p^t is accurate to $\frac{k \log T}{\epsilon} \left(\frac{1}{\sqrt{\ell}} + \frac{1}{\sqrt{n}}\right)$.

Under assumptions on same distribution and k changes.

Extensions and Directions

Extension: histograms

Can integrate with e.g. Bassily-Smith 2015; more work needed

- Extension: multiple subpopulations as long as each has $\geq \sqrt{n}$ members
- Direction: other algorithmic approaches
- Direction: other models
- Direction: lower bounds

