Strategic Classification from Revealed Preferences

Jinshuo Dong* Aaron Roth* Zachary Schutzman* **Bo Waggoner***' Z. Steven Wu*' *University of Pennsylvania 'Microsoft Research

EC, June 2018

Strategic Classification from Revealed Preferences

Strategic Classification from Revealed Preferences

OR

Strategic Classification from Revealed Preferences

OR

when Data Goes Rogue

classification

Strategic classification

Over rounds $t = 1, \ldots, T$:

Over rounds $t = 1, \ldots, T$:

An email arrives.

 $\hat{x}^t = \text{feature vector: what the system knows}$

Over rounds $t = 1, \ldots, T$:

An email arrives.

 $\hat{x}^t = \text{feature vector: what the system knows}$

• The system classifies it as honest (+1) or spam (-1) $\beta^t = current \ classifier$

Over rounds $t = 1, \ldots, T$:

An email arrives.

 $\hat{x}^t = \textit{feature vector: what the system knows}$

• The system classifies it as honest (+1) or spam (-1) $\beta^t = current \ classifier$

• The system observes (eventually) the true label $y^t \in \{\pm 1\}$.

Over rounds $t = 1, \ldots, T$:

An email arrives.

 $\hat{x}^t = \textit{feature vector: what the system knows}$

- The system classifies it as honest (+1) or spam (-1) $\beta^t = current \ classifier$
- The system observes (eventually) the true label $y^t \in \{\pm 1\}$.

Challenge: Spammers respond to the classifier!

Spam content \hat{x}^t is strategically chosen depending on β^t .

Strategic classification: prior work

Prior work:¹

 \blacksquare Given dataset $\sim \mathcal{D}$ and spammer preferences, learn hypothesis β

¹Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.

Strategic classification: prior work

Prior work:¹

- \blacksquare Given dataset $\sim \mathcal{D}$ and spammer preferences, learn hypothesis β
- β should classify well on D in Stackelberg equilibrium spammers best-respond to β

¹Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.

Strategic classification: prior work

Prior work:¹

- \blacksquare Given dataset $\sim \mathcal{D}$ and spammer preferences, learn hypothesis β
- β should classify well on D in Stackelberg equilibrium spammers best-respond to β

This work (key goals):

- Agents arrive online; performance measured by regret
- Agents are **heterogeneous**
- System never sees spammer preferences! Must infer these from behavior.

¹Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.

This work

Question

How should one **model** strategic classification with online arrivals and limited feedback?

What is the proper **benchmark** for this problem?

How do we design algorithms that perform well?

Each arrival t is defined by:

Each arrival t is defined by:

• $x^t = \text{its "true" features}$

Each arrival t is defined by:

- $x^t = \text{its "true" features}$
- $y^t = 1$ if it is honest, -1 if spam

Each arrival t is defined by:

- $x^t = its$ "true" features
- $y^t = 1$ if it is honest, -1 if spam
- u^t = utility function u^t(β, x, x̂) utility for modifying x to x̂ when classifier is β

Each arrival t is defined by:

- $x^t = its$ "true" features
- $y^t = 1$ if it is honest, -1 if spam
- u^t = utility function u^t(β, x, x̂) utility for modifying x to x̂ when classifier is β

If $y^t = 1$ (honest): always set $\hat{x}^t = x^t$ Send desired email, nonstrategically.

If $y^t = -1$ (spam): choose \hat{x}^t to maximize utility! Strategically modify email in response to β^t .

Over rounds $t = 1, \ldots, T$:

• Classifier β^t is deployed

Over rounds $t = 1, \ldots, T$:

- Classifier β^t is deployed
- **D**ata point (\hat{x}^t, y^t) is observed

Over rounds $t = 1, \ldots, T$:

- Classifier β^t is deployed
- $\hfill \ensuremath{\,{\rm \, o}}$ Data point (\hat{x}^t,y^t) is observed
- System receives loss $\ell(\beta^t, \hat{x}^t, y^t)$

Measures performance of classifier on observation

Over rounds $t = 1, \ldots, T$:

- Classifier β^t is deployed
- $\hfill \ensuremath{\,{\rm \, o}}$ Data point (\hat{x}^t,y^t) is observed
- System receives loss ℓ(β^t, x̂^t, y^t) Measures performance of classifier on observation
- \blacksquare System updates to β^{t+1}

If honest: $\hat{x}^t(\beta) = x^t$ If spam: $\hat{x}^t(\beta) = \arg \max_{\hat{x}} u^t(\beta, x^t, \hat{x}).$

Compare to **best fixed classifier** β^* in hindsight.

Key point: If we had used a different classifier, spammers would have responded differently!

If honest: $\hat{x}^t(\beta) = x^t$ If spam: $\hat{x}^t(\beta) = \arg \max_{\hat{x}} u^t(\beta, x^t, \hat{x}).$

Notice: Algorithm cannot know or compute OPT!

If honest: $\hat{x}^t(\beta) = x^t$ If spam: $\hat{x}^t(\beta) = \arg \max_{\hat{x}} u^t(\beta, x^t, \hat{x}).$

Notice: Algorithm cannot know or compute OPT! **Nevertheless:** We will compete with it (under assumptions).

To solve the problem, we assume:

• Linear prediction $\beta^t \cdot \hat{x}^t \in (-\infty, \infty)$

 $larger \leftrightarrow more \ honest$

To solve the problem, we assume:

• Linear prediction $\beta^t \cdot \hat{x}^t \in (-\infty, \infty)$

• Loss
$$\ell(\beta, \hat{x}, y) = \log\left(1 + e^{-y\beta \cdot \hat{x}}\right)$$

 $\begin{array}{l} \textit{larger} \leftrightarrow \textit{more honest} \\ \textit{results also hold for hinge} \end{array}$

To solve the problem, we assume:

- Linear prediction $\beta^t \cdot \hat{x}^t \in (-\infty, \infty)$
- Loss $\ell(\beta, \hat{x}, y) = \log \left(1 + e^{-y\beta \cdot \hat{x}}\right)$

 $\begin{array}{l} \textit{larger} \leftrightarrow \textit{more honest} \\ \textit{results also hold for hinge} \end{array}$

Spammer utility is of the form

for a class of d^t = distance between truth and manipulation

To solve the problem, we assume:

- Linear prediction $\beta^t \cdot \hat{x}^t \in (-\infty, \infty)$
- Loss $\ell(\beta, \hat{x}, y) = \log \left(1 + e^{-y\beta \cdot \hat{x}}\right)$

 $\begin{array}{l} \textit{larger} \leftrightarrow \textit{more honest} \\ \textit{results also hold for hinge} \end{array}$

Spammer utility is of the form

for a class of d^t = distance between truth and manipulation

Example: $d^t(x, \hat{x}) = ||Ax - A\hat{x}||_p^r$ for r > 1 and A invertible.

Main result: reduction to online convex optimization.

Main result: reduction to online convex optimization.

Theorem

Let $\ell^t(\beta) = \ell(\beta, \hat{x}^t(\beta), y^t)$. Then under our assumptions, ℓ^t is convex!

Main result: reduction to online convex optimization.

Theorem

Let $\ell^t(\beta) = \ell(\beta, \hat{x}^t(\beta), y^t)$. Then under our assumptions, ℓ^t is **convex**!

Main tool: convex analysis.

•
$$u^t = \hat{x} \cdot \beta - d^t(x^t, \hat{x}).$$

- Best-response $\hat{x}^t(\beta)$ given by convex conjugate of d^t .
- d^t homogeneous of degree $k \implies \hat{x}^t(\beta) \cdot \beta$ is convex.
- $\blacksquare \implies \beta \mapsto \log \left(1 + e^{-y^t \hat{x}^t(\beta) \cdot \beta} \right) \text{ is convex}.$

Main result: reduction to online convex optimization.

Theorem

Let $\ell^t(\beta) = \ell(\beta, \hat{x}^t(\beta), y^t)$. Then under our assumptions, ℓ^t is convex!

Corollary

By appropriate application of online convex optimization algorithms, we can achieve average Stackelberg regret $O\left(\frac{1}{\sqrt{T}}\right)$. T = number of arrivals

Despite not knowing the details of ℓ^t .

Extensions, future work

Extensions:

- Algorithm treats honest and spam updates differently can get full gradient feedback for honest data points
- Somewhat more general agent utilities; hinge loss

Extensions, future work

Extensions:

- Algorithm treats honest and spam updates differently can get full gradient feedback for honest data points
- Somewhat more general agent utilities; hinge loss

Future work:

- Other loss functions
- Other forms of agent utility
- Outside the convex optimization paradigm?

Extensions, future work

Extensions:

- Algorithm treats honest and spam updates differently can get full gradient feedback for honest data points
- Somewhat more general agent utilities; hinge loss

Future work:

- Other loss functions
- Other forms of agent utility
- Outside the convex optimization paradigm?

