
Strategic Classification from Revealed
Preferences

Jinshuo Dong∗

Aaron Roth∗

Zachary Schutzman∗

Bo Waggoner∗’
Z. Steven Wu∗’

∗University of Pennsylvania
’Microsoft Research

EC, June 2018

1 / 13



Strategic Classification from Revealed
Preferences

OR

When Data Goes Rogue

2 / 13



Strategic Classification from Revealed
Preferences

OR

When Data Goes Rogue

2 / 13



Strategic Classification from Revealed
Preferences

OR

When Data Goes Rogue

2 / 13



Strategic

classification

algorithmdata output

3 / 13



Strategic classification

algorithmdata output

3 / 13



Strategic classification: pictorally

honest emails spam emails
(if no detection)

4 / 13



Strategic classification: pictorally

honest emails spam emails
(if no detection)

4 / 13



Strategic classification: pictorally

honest emails spam emails
(strategically modified)

4 / 13



Strategic classification: pictorally

honest emails spam emails
(strategically modified)

4 / 13



Online model of strategic classification

Over rounds t = 1, . . . , T :

An email arrives.
x̂t = feature vector: what the system knows

The system classifies it as honest (+1) or spam (−1)
βt = current classifier

The system observes (eventually) the true label yt ∈ {±1}.

Challenge: Spammers respond to the classifier!

Spam content x̂t is strategically chosen depending on βt.

5 / 13



Online model of strategic classification

Over rounds t = 1, . . . , T :

An email arrives.
x̂t = feature vector: what the system knows

The system classifies it as honest (+1) or spam (−1)
βt = current classifier

The system observes (eventually) the true label yt ∈ {±1}.

Challenge: Spammers respond to the classifier!

Spam content x̂t is strategically chosen depending on βt.

5 / 13



Online model of strategic classification

Over rounds t = 1, . . . , T :

An email arrives.
x̂t = feature vector: what the system knows

The system classifies it as honest (+1) or spam (−1)
βt = current classifier

The system observes (eventually) the true label yt ∈ {±1}.

Challenge: Spammers respond to the classifier!

Spam content x̂t is strategically chosen depending on βt.

5 / 13



Online model of strategic classification

Over rounds t = 1, . . . , T :

An email arrives.
x̂t = feature vector: what the system knows

The system classifies it as honest (+1) or spam (−1)
βt = current classifier

The system observes (eventually) the true label yt ∈ {±1}.

Challenge: Spammers respond to the classifier!

Spam content x̂t is strategically chosen depending on βt.

5 / 13



Online model of strategic classification

Over rounds t = 1, . . . , T :

An email arrives.
x̂t = feature vector: what the system knows

The system classifies it as honest (+1) or spam (−1)
βt = current classifier

The system observes (eventually) the true label yt ∈ {±1}.

Challenge: Spammers respond to the classifier!

Spam content x̂t is strategically chosen depending on βt.

5 / 13



Strategic classification: prior work

Prior work:1

Given dataset ∼ D and spammer preferences, learn hypothesis β

β should classify well on D in Stackelberg equilibrium
spammers best-respond to β

This work (key goals):

Agents arrive online; performance measured by regret

Agents are heterogeneous

System never sees spammer preferences!
Must infer these from behavior.

1Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.
6 / 13



Strategic classification: prior work

Prior work:1

Given dataset ∼ D and spammer preferences, learn hypothesis β

β should classify well on D in Stackelberg equilibrium
spammers best-respond to β

This work (key goals):

Agents arrive online; performance measured by regret

Agents are heterogeneous

System never sees spammer preferences!
Must infer these from behavior.

1Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.
6 / 13



Strategic classification: prior work

Prior work:1

Given dataset ∼ D and spammer preferences, learn hypothesis β

β should classify well on D in Stackelberg equilibrium
spammers best-respond to β

This work (key goals):

Agents arrive online; performance measured by regret

Agents are heterogeneous

System never sees spammer preferences!
Must infer these from behavior.

1Brückner, Scheffer 2011; Hardt, Megiddo, Papadimitriou, Wooters 2016.
6 / 13



This work

Question

How should one model strategic classification with online arrivals and
limited feedback?

What is the proper benchmark for this problem?

How do we design algorithms that perform well?

7 / 13



Model (1/2)

Each arrival t is defined by:

xt = its “true” features

yt = 1 if it is honest, −1 if spam

ut = utility function ut(β, x, x̂)
utility for modifying x to x̂ when classifier is β

If yt = 1 (honest): always set x̂t = xt

Send desired email, nonstrategically.

If yt = −1 (spam): choose x̂t to maximize utility!
Strategically modify email in response to βt.

8 / 13



Model (1/2)

Each arrival t is defined by:

xt = its “true” features

yt = 1 if it is honest, −1 if spam

ut = utility function ut(β, x, x̂)
utility for modifying x to x̂ when classifier is β

If yt = 1 (honest): always set x̂t = xt

Send desired email, nonstrategically.

If yt = −1 (spam): choose x̂t to maximize utility!
Strategically modify email in response to βt.

8 / 13



Model (1/2)

Each arrival t is defined by:

xt = its “true” features

yt = 1 if it is honest, −1 if spam

ut = utility function ut(β, x, x̂)
utility for modifying x to x̂ when classifier is β

If yt = 1 (honest): always set x̂t = xt

Send desired email, nonstrategically.

If yt = −1 (spam): choose x̂t to maximize utility!
Strategically modify email in response to βt.

8 / 13



Model (1/2)

Each arrival t is defined by:

xt = its “true” features

yt = 1 if it is honest, −1 if spam

ut = utility function ut(β, x, x̂)
utility for modifying x to x̂ when classifier is β

If yt = 1 (honest): always set x̂t = xt

Send desired email, nonstrategically.

If yt = −1 (spam): choose x̂t to maximize utility!
Strategically modify email in response to βt.

8 / 13



Model (1/2)

Each arrival t is defined by:

xt = its “true” features

yt = 1 if it is honest, −1 if spam

ut = utility function ut(β, x, x̂)
utility for modifying x to x̂ when classifier is β

If yt = 1 (honest): always set x̂t = xt

Send desired email, nonstrategically.

If yt = −1 (spam): choose x̂t to maximize utility!
Strategically modify email in response to βt.

8 / 13



Model (2/2)

Over rounds t = 1, . . . , T :

Classifier βt is deployed

Data point (x̂t, yt) is observed

System receives loss `(βt, x̂t, yt)
Measures performance of classifier on observation

System updates to βt+1

9 / 13



Model (2/2)

Over rounds t = 1, . . . , T :

Classifier βt is deployed

Data point (x̂t, yt) is observed

System receives loss `(βt, x̂t, yt)
Measures performance of classifier on observation

System updates to βt+1

9 / 13



Model (2/2)

Over rounds t = 1, . . . , T :

Classifier βt is deployed

Data point (x̂t, yt) is observed

System receives loss `(βt, x̂t, yt)
Measures performance of classifier on observation

System updates to βt+1

9 / 13



Model (2/2)

Over rounds t = 1, . . . , T :

Classifier βt is deployed

Data point (x̂t, yt) is observed

System receives loss `(βt, x̂t, yt)
Measures performance of classifier on observation

System updates to βt+1

9 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Compare to best fixed classifier β∗ in hindsight.

Key point: If we had used a different classifier,
spammers would have responded differently!

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Avg Regret =

1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

− 1

T

T∑
t=1

`(β∗, x̂t(β∗), yt)︸ ︷︷ ︸
OPT

.

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Avg Regret =

1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

−

1

T

T∑
t=1

`(β∗, x̂t(β∗), yt)︸ ︷︷ ︸
OPT

.

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Avg Regret =
1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

− 1

T

T∑
t=1

`(β∗, x̂t(β∗), yt)︸ ︷︷ ︸
OPT

.

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Avg Regret =
1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

− 1

T

T∑
t=1

`(β∗, x̂t(β∗), yt)︸ ︷︷ ︸
OPT

.

Notice: Algorithm cannot know or compute OPT!

Nevertheless: We will compete with it (under assumptions).

10 / 13



Performance and benchmark

Best-response function:
If honest: x̂t(β) = xt

If spam: x̂t(β) = argmaxx̂ u
t(β, xt, x̂).

Avg Regret =
1

T

T∑
t=1

`(βt, x̂t(βt), yt)︸ ︷︷ ︸
Performance

− 1

T

T∑
t=1

`(β∗, x̂t(β∗), yt)︸ ︷︷ ︸
OPT

.

Notice: Algorithm cannot know or compute OPT!
Nevertheless: We will compete with it (under assumptions).

10 / 13



Assumptions we make

To solve the problem, we assume:

Linear prediction βt · x̂t ∈ (−∞,∞) larger ↔ more honest

Loss `(β, x̂, y) = log
(
1 + e−yβ·x̂

)
results also hold for hinge

Spammer utility is of the form

ut = βt · x̂t︸ ︷︷ ︸
prediction

− dt(xt, x̂t)︸ ︷︷ ︸
cost

for a class of dt = distance between truth and manipulation

Example: dt(x, x̂) = ‖Ax− Ax̂‖rp for r > 1 and A invertible.

11 / 13



Assumptions we make

To solve the problem, we assume:

Linear prediction βt · x̂t ∈ (−∞,∞) larger ↔ more honest

Loss `(β, x̂, y) = log
(
1 + e−yβ·x̂

)
results also hold for hinge

Spammer utility is of the form

ut = βt · x̂t︸ ︷︷ ︸
prediction

− dt(xt, x̂t)︸ ︷︷ ︸
cost

for a class of dt = distance between truth and manipulation

Example: dt(x, x̂) = ‖Ax− Ax̂‖rp for r > 1 and A invertible.

11 / 13



Assumptions we make

To solve the problem, we assume:

Linear prediction βt · x̂t ∈ (−∞,∞) larger ↔ more honest

Loss `(β, x̂, y) = log
(
1 + e−yβ·x̂

)
results also hold for hinge

Spammer utility is of the form

ut = βt · x̂t︸ ︷︷ ︸
prediction

− dt(xt, x̂t)︸ ︷︷ ︸
cost

for a class of dt = distance between truth and manipulation

Example: dt(x, x̂) = ‖Ax− Ax̂‖rp for r > 1 and A invertible.

11 / 13



Assumptions we make

To solve the problem, we assume:

Linear prediction βt · x̂t ∈ (−∞,∞) larger ↔ more honest

Loss `(β, x̂, y) = log
(
1 + e−yβ·x̂

)
results also hold for hinge

Spammer utility is of the form

ut = βt · x̂t︸ ︷︷ ︸
prediction

− dt(xt, x̂t)︸ ︷︷ ︸
cost

for a class of dt = distance between truth and manipulation

Example: dt(x, x̂) = ‖Ax− Ax̂‖rp for r > 1 and A invertible.

11 / 13



Results

Main result: reduction to online convex optimization.

Theorem

Let `t(β) = `(β, x̂t(β), yt).
Then under our assumptions, `t is convex!

12 / 13



Results

Main result: reduction to online convex optimization.

Theorem

Let `t(β) = `(β, x̂t(β), yt).
Then under our assumptions, `t is convex!

12 / 13



Results

Main result: reduction to online convex optimization.

Theorem

Let `t(β) = `(β, x̂t(β), yt).
Then under our assumptions, `t is convex!

Main tool: convex analysis.

ut = x̂ · β − dt(xt, x̂).
Best-response x̂t(β) given by convex conjugate of dt.

dt homogeneous of degree k =⇒ x̂t(β) · β is convex.

=⇒ β 7→ log
(
1 + e−y

tx̂t(β)·β) is convex.

12 / 13



Results

Main result: reduction to online convex optimization.

Theorem

Let `t(β) = `(β, x̂t(β), yt).
Then under our assumptions, `t is convex!

Corollary

By appropriate application of online convex optimization algorithms,

we can achieve average Stackelberg regret O
(

1√
T

)
.

T = number of arrivals

Despite not knowing the details of `t.

12 / 13



Extensions, future work

Extensions:

Algorithm treats honest and spam updates differently
can get full gradient feedback for honest data points

Somewhat more general agent utilities; hinge loss

Future work:

Other loss functions

Other forms of agent utility

Outside the convex optimization paradigm?

Thanks!

13 / 13



Extensions, future work

Extensions:

Algorithm treats honest and spam updates differently
can get full gradient feedback for honest data points

Somewhat more general agent utilities; hinge loss

Future work:

Other loss functions

Other forms of agent utility

Outside the convex optimization paradigm?

Thanks!

13 / 13



Extensions, future work

Extensions:

Algorithm treats honest and spam updates differently
can get full gradient feedback for honest data points

Somewhat more general agent utilities; hinge loss

Future work:

Other loss functions

Other forms of agent utility

Outside the convex optimization paradigm?

Thanks!

13 / 13


