Descending Price Optimally Coordinates Search

Robert Kleinberg **Bo Waggoner** Glen Weyl Cornell Microsoft NYC Microsoft NYC

INFORMS, Nov 2018

Overview

Challenge: market design with **information acquisition costs**

- 1 Background
- 2 Descending Price Optimally Coordinates Search. Kleinberg, Waggoner, Weyl EC 2016.
- 3 Recent related work

Background: optimal search

Weitzman 1979: Pandora's Box Problem

Each alternative $i = 1, \ldots, n$ has:

- known value distribution \mathcal{D}_i
- known cost of inspection: c_i
- when/if cost is paid, value v_i drawn

Background: optimal search

Weitzman 1979: Pandora's Box Problem

Each alternative $i = 1, \ldots, n$ has:

- known value distribution \mathcal{D}_i
- known cost of inspection: c_i
- when/if cost is paid, value v_i drawn

Challenge: inspect sequentially, stop and choose one. maximize (value – sum of costs)

Background: optimal search

Weitzman 1979: Pandora's Box Problem

Each alternative $i = 1, \ldots, n$ has:

- known value distribution \mathcal{D}_i
- known cost of inspection: c_i
- when/if cost is paid, value v_i drawn

Challenge: inspect sequentially, stop and choose one. maximize (value – sum of costs)

models a set of bidders

cost of entry, information acquisition, etc.

Background continued

Optimal algorithm:

- Compute indices $\sigma_i(\mathcal{D}_i, c_i)$
- Cllock descends from $+\infty$
- When it hits σ_i: inspect, paying c_i and learning v_i
- When it hits v_i: stop and choose i

Background continued

Optimal algorithm:

- Compute indices $\sigma_i(\mathcal{D}_i, c_i)$
- Cllock descends from $+\infty$
- When it hits σ_i: inspect, paying c_i and learning v_i
- When it hits v_i: stop and choose i

Model: Single Item with Inspection

Each bidder $i = 1, \ldots, n$ has:

• private cost c_i , distribution \mathcal{D}_i

parameters from common-knowledge distributions

Model: Single Item with Inspection

Each bidder $i = 1, \ldots, n$ has:

- private cost c_i, distribution D_i
 parameters from common-knowledge distributions
- can inspect secretly at any time, $v_i \sim \mathcal{D}_i$

Model: Single Item with Inspection

Each bidder $i = 1, \ldots, n$ has:

- private cost c_i, distribution D_i
 parameters from common-knowledge distributions
- can inspect secretly at any time, $v_i \sim \mathcal{D}_i$
- inspection is mandatory before obtaining item

Ascending and sealed-bid auctions can fail:

Ascending and sealed-bid auctions can fail:

- Many bidders, values $\text{Bernoulli}(\epsilon)$
- Must decide early: drop out or inspect?

Ascending and sealed-bid auctions can fail:

- Many bidders, values $\text{Bernoulli}(\epsilon)$
- Must decide early: drop out or inspect?
- If many drop out: high-value winner is not found
- If many inspect: wasted inspection costs (unsupportable in equilibrium.)

Ascending and sealed-bid auctions can fail:

- Many bidders, values $\text{Bernoulli}(\epsilon)$
- Must decide early: drop out or inspect?
- If many drop out: high-value winner is not found
- If many inspect: wasted inspection costs (unsupportable in equilibrium.)

 \implies inspection is **not coordinated**

Intuition: benefit of the Dutch

- Allow bidders to wait while price descends
- If item is claimed early: no wasted inspection cost
- If item is available late: inspection has high returns

Theorem

Theorem

- (c_i, \mathcal{D}_i) corresponds to a distribution F_i of values
- Given equilibrium for F_1, \ldots, F_n , bid $b_i(v_i)$:

Theorem

- (c_i, \mathcal{D}_i) corresponds to a distribution F_i of values
- Given equilibrium for F_1, \ldots, F_n , bid $b_i(v_i)$:
- Inspect when price reaches $b_i(\sigma_i)$.

Theorem

- (c_i, \mathcal{D}_i) corresponds to a distribution F_i of values
- Given equilibrium for F_1, \ldots, F_n , bid $b_i(v_i)$:
- Inspect when price reaches $b_i(\sigma_i)$.
- Claim item when price reaches $b_i(v_i)$.

Theorem

- (c_i, \mathcal{D}_i) corresponds to a distribution F_i of values
- Given equilibrium for F_1, \ldots, F_n , bid $b_i(v_i)$:
- Inspect when price reaches $b_i(\sigma_i)$.
- Claim item when price reaches $b_i(v_i)$.
- Equivalence of (optimal) welfare!

Results continued

Implications:

- Welfare $\geq \left(1 \frac{1}{e}\right)$ First-Best
- Symmetric bidders \implies fully efficient
- Revenue implications...

Extensions, ideas

Channel Auctions. Azevedo, Pennock, Weyl.

The Marshallian Match. Waggoner, Weyl (forthcoming).

- Two-sided market
- Each side places bids on possible matches
- When descending clock = sum of bids: inspect or match

Extensions, ideas

Channel Auctions. Azevedo, Pennock, Weyl.

The Marshallian Match. Waggoner, Weyl (forthcoming).

- Two-sided market
- Each side places bids on possible matches
- When descending clock = sum of bids: inspect or match

Thanks!