An Axiomatic Study of Scoring Rule Markets

Rafael Frongillo CU Boulder Bo Waggoner UPenn January 2018

Prediction markets

Prediction market: mechanism wherein agents buy/sell "contracts" ... thereby revealing "predictions" about a future event.

Contract: function f : outcomes \rightarrow money.

Question: How to choose available contracts/prices at each time?

Example

Predict: total number of Trump Tweets in 2018

Contract: pay off 1 cent for every tweet

Cost function: convex C : total contracts sold \rightarrow total cost paid.

If θ contracts have been sold so far, payment is $C(\theta + 100) - C(\theta)$.

Prior work and this paper

Previously studied: cost function markets

- The price converges to expected value of the contract
- They are great¹

Previously proposed generalization: scoring rule markets² (SRMs)

- Can make other kinds of predictions
- But are they great?

This paper:

- Propose axioms to address this question,
- apply to e.g. mode, median markets,
- characterize satisfaction of all axioms.

¹[Abernethy, Chen, Wortman Vaughan 2013] ²[Lambert, Pennock, Shoham 2008]

Outline

- **1** Define scoring rule markets
- 2 Axioms and key examples
- ³ Characterization and new market
- 4 End talk

Background: Properties of distributions

Property or *statistic* of a probability distribution: $\Gamma : \Delta_{\mathcal{Y}} \to \mathcal{R}$.

- mean
- mode
- median

Scoring rule: function $S : \mathcal{R} \times \mathcal{Y} \to \mathbb{R}$.

•
$$S(r, y) = -(r - y)^2$$

• $S(r, y) = \mathbb{1}_{r=y}$
• $S(r, y) = -|r - y|$

elicits mean elicits mode elicits median

Why focus on SRMs?

Axiom (Incentive Compatibility for a property)

- market histories \longrightarrow prediction r
- max utility \Lefticity accurate prediction

Axiom (Path independence)

No gain from making a sequence of trades versus just one.

Why focus on SRMs?

Theorem

Incentive Compatibility and Path Independence \Rightarrow SRM.

Definition (SRM³)

In a scoring rule market (SRM), the net payoff for moving the prediction from r' to r is

S(r,y) - S(r',y).

³[Hanson 2003; Lambert, Pennock, Shoham 2008]

Robustness for free

Arbitrage: purchase of a contract that is profitable in expectation for *every* belief.

Theorem

All SRMs satisfy **no arbitrage**: there is never an arbitrage opportunity.

Outline

- 1 Define scoring rule markets
- ² Axioms and key examples
- ³ Characterization and new market
- 4 End talk

Example: Mode

Consider the SRM defined by $S(r, y) = \alpha \mathbb{1}_{r=y}$.

If α is small:

If α is large:

First new axiom

Liability from purchasing contract(s): maximum possible net loss.

Axiom (Bounded Trader Budget')

Agents can usefully participate while maintaining arbitrarily small liability.

Theorem

No SRM for **any** "finite property" can satisfy BTB.

Example: Median

Consider the SRM defined by S(r, y) = -|r - y|.

Theorem

If beliefs contain no point masses, **every** SRM for **every** quantile property satisfies Bounded Trader Budget.

Motivating the main axiom

What can you do in a market? Both buy and sell.

But e.g. in the median market, agents sometimes...

- ... cannot decrease risk by "selling back" contracts
- ... cannot even decrease liability!

Main axioms

Axiom (Weak Neutralization)

For any agent with liability d, there always exists a trade yielding net liability strictly less than d.

 \Rightarrow can always reduce liability.

Axiom (Trade Neutralization)

For any agent with liability d, there always exists a trade yielding **constant** net liability strictly less than d.

 \Rightarrow can always reduce liability and eliminate risk.

Example: Median, revisited

Consider the SRM defined by S(r, y) = -|r - y|.

Theorem

No *SRM* for **any quantile** *satisfies Weak Neutralization* (*nor Trade Neutralization*, *therefore*).

Theorem (known/direct)

For any expectation of a bounded random variable, there exist SRMs satisfying all axioms.

(In particular, a cost function based market.)

Outline

- 1 Define scoring rule markets
- 2 Axioms and key examples
- ³ Characterization and new market
- 4 End talk

Theorem (Main)

Any SRM satisfying Trade Neutralization can be written as a cost-function based market.

Proof idea: (1) Lemma showing that contracts mod price form a subgroup of \mathbb{R}^k ; (2) show pricing is given by single cost function. (*Hidden: bunch of convex analysis.*)

Corollary (Main)

Any market satisfying all our axioms is cost-function based, hence (essentially) elicits an expectation.

What about WN? New market idea

Predict: ratio of expectations $\mathbb{E}X/\mathbb{E}Y$, e.g. $\frac{\mathbb{E} \text{ Trump Tweets}}{\mathbb{E} \text{ Bieber Tweets}}$. **Market**: use cost function market for Trump Tweets **But**: you *pay* in units of "Bieber contracts"

Satisfies WN, but not TN!

Takeaways

- Scoring rule markets for properties like medians, modes, ...
- Proposed axioms for "good" (great?) markets
- Only property to satisfy all axioms: expectations
- Investigation leads to new market design ideas
- Other axioms?
- Innovative prediction mechanism ideas?

Thanks!