Market-Based Mechanisms for Acquiring and Aggregating Data

Bo Waggoner Microsoft NYC TTIC, Aug 2018

based on work with Jacob Abernethy (Georgia Tech)

and Rafael Frongillo (U. Colorado)

How to procure data from strategic sources?

How to procure data from strategic sources?

Interesting because: quantifies value of information

Question

How to procure data from strategic sources?

Interesting because: quantifies value of information

Not addressed today: crowdsourcing approaches...

Instead: how to pay strategic agents for data

One line of work

[ABERNETHY, CHEN, HO, W EC 2015]¹:

¹cf [Roth, Schoenebeck EC 2011]; [Chen, Immorlica, Lucier, Syrgkanis, Ziani EC 2018]

One line of work

[ABERNETHY, CHEN, HO, \mathbf{W} EC 2015]¹:

- convex loss function, hypothesis $w \in \mathbb{R}^d$
- agents hold i.i.d. data and cost to reveal
- agents sequentially offered random price menu prices
 value of data
- prove generalization error $O\left(\sqrt{\frac{\gamma}{\mathsf{Budget}}}\right)$

¹cf [Roth, Schoenebeck EC 2011]; [Chen, Immorlica, Lucier, Syrgkanis, Ziani EC 2018]

One line of work

[ABERNETHY, CHEN, HO, \mathbf{W} EC 2015]¹:

- convex loss function, hypothesis $w \in \mathbb{R}^d$
- agents hold i.i.d. data and cost to reveal
- agents sequentially offered random price menu prices value of data
- prove generalization error $O\left(\sqrt{\frac{\gamma}{\mathsf{Budget}}}\right)$

Agents bid strategically, cannot modify or falsify data *future work!*

¹cf [Roth, Schoenebeck EC 2011]; [Chen, Immorlica, Lucier, Syrgkanis, Ziani EC 2018]

First cut: incentivize experts to aggregate knowledge.

[Abernethy, Frongillo NIPS 2011]:

First cut: incentivize experts to aggregate knowledge.

[Abernethy, Frongillo NIPS 2011]:

- Choose a loss function $\ell(hypothesis, data)$
- Choose initial hypothesis h⁰
- Experts $1, \ldots, T$ arrive and update $h^{t-1} \rightarrow h^t$
- Reveal a holdout/test data set

First cut: incentivize experts to aggregate knowledge.

[Abernethy, Frongillo NIPS 2011]:

- Choose a loss function $\ell(hypothesis, data)$
- Choose initial hypothesis h⁰
- Experts $1, \ldots, T$ arrive and update $h^{t-1} \rightarrow h^t$
- Reveal a holdout/test data set

Payoff to t is

$$\ell(h^{t-1},\mathsf{data})\ -\ \ell(h^t,\mathsf{data})$$

First cut: incentivize experts to aggregate knowledge.

[Abernethy, Frongillo NIPS 2011]:

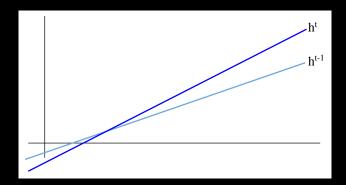
- Choose a loss function $\ell(hypothesis, data)$
- Choose initial hypothesis h⁰
- Experts $1, \ldots, T$ arrive and update $h^{t-1} \rightarrow h^t$
- Reveal a holdout/test data set

Payoff to t is

$$\ell(h^{t-1},\mathsf{data})\ -\ \ell(h^t,\mathsf{data})$$

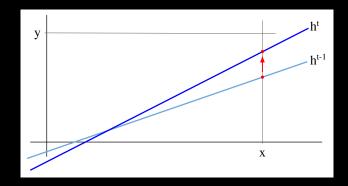
Designer pays: $\ell(h^0, data) - \ell(h^T, data)$

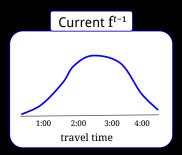
Extensions: markets for data

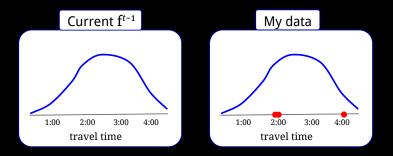

- [W, FRONGILLO, ABERNETHY NIPS 2015]:
 - Conditional (generalized regression) markets
 - Kernel-ization
 - Differentially private in data/modifications not covered today

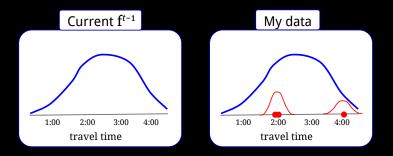
Example: linear regression

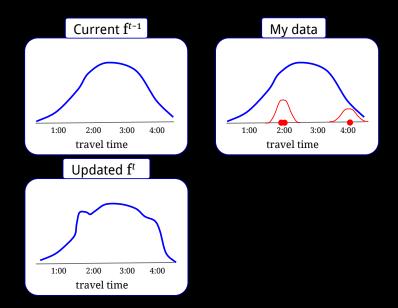
Market hypothesis: $h \in \mathbb{R}^{d}$

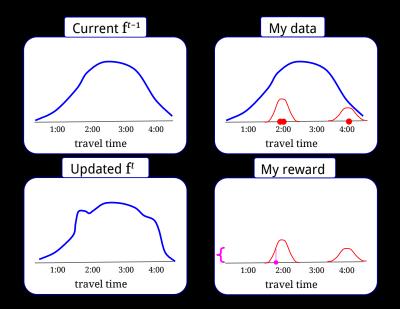

$$\hat{y} = h \cdot x$$


Example: linear regression


Market hypothesis: $h \in \mathbb{R}^d$


$$\hat{y} = h \cdot x$$




Pay $\approx h^{t-1} \cdot x$ per "share"; get payoff y

When do you get a "market"?

Theorem (Frongillo, W ITCS 2018)

A learning mechanism can be written as a full "market" if and only if: the loss function is a **Bregman divergence**

Full market: can resell previously-purchased contracts.

When do you get a "market"?

Theorem (Frongillo, W ITCS 2018)

A learning mechanism can be written as a full "market" if and only if: the loss function is a **Bregman divergence**

equivalently

the learning problem is to predict the mean.

Full market: can resell previously-purchased contracts.

Key points

Understanding data procurement is interesting

- Market mechanism:
 - aligns incentives
 - interface with experts and data-providers
 - theory of elicitation \rightarrow implications for design

Key points

Understanding data procurement is interesting

- Market mechanism:
 - aligns incentives
 - interface with experts and data-providers
 - theory of elicitation \rightarrow implications for design

Tons of open directions for data procurement! Thanks!