Efficient Competitions and

Online Learning with Strategic Forecasters

Rafael Frongillo^a, Robert Gomez^b, Anish Thilagar^c, Bo Waggoner^d

^aColleague at CU Boulder ^bUndergrad thesis student ^c2nd-3rd year PhD student

^dme

Classic online learning from expert advice

On rounds $t = 1, \ldots, T$:

- Expert i predicts $p_{it} \in [0, 1]$
- Algorithm chooses an expert
- Outcome $\omega \in \{0,1\}$; *i*'s loss is $(\omega p_{it})^2$
- Algorithm's goal: low regret to the best expert

Classic online learning from expert advice

On rounds $t = 1, \ldots, T$:

- Expert i predicts $p_{it} \in [0, 1]$
- Algorithm chooses an expert
- Outcome $\omega \in \{0,1\}$; *i*'s loss is $(\omega p_{it})^2$
- Algorithm's goal: low regret to the best expert

Multiplicative weights (MW):

choose i w.prob. $\propto e^{-\eta({\rm total \; loss})}.$

Guarantees: Regret $O(\sqrt{T})$.

Strategic experts

Changes to model:

- Experts report some r_{it} , potentially $\neq p_{it}$
- Experts want to be chosen, e.g. max $\mathbb{E}[\# \text{ times chosen}]$
- Strategic regret: to the best expert's knowledge still according to p_{it}'s

Strategic experts

Changes to model:

- Experts report some r_{it} , potentially $\neq p_{it}$
- Experts want to be chosen, e.g. max $\mathbb{E}[\# \text{ times chosen}]$
- Strategic regret: to the best expert's knowledge still according to p_{it}'s

Question: what is the cost of strategic behavior in online learning?

Roughgarden and Schrijvers (Neurips 2017): experts want to maximize their (unnormalized) weight.

Roughgarden and Schrijvers (Neurips 2017): experts want to maximize their (unnormalized) weight.

Freeman, Pennock, Podimata, Wortman Vaughan (ICML 2020): Experts want to maximize Pr[chosen].

Roughgarden and Schrijvers (Neurips 2017): experts want to maximize their (unnormalized) weight.

Freeman, Pennock, Podimata, Wortman Vaughan (ICML 2020): Experts want to maximize Pr[chosen].

• Myopic experts: $O(\sqrt{T})$ regret truthful algorithm

Roughgarden and Schrijvers (Neurips 2017): experts want to maximize their (unnormalized) weight.

Freeman, Pennock, Podimata, Wortman Vaughan (ICML 2020): Experts want to maximize Pr[chosen].

- Myopic experts: $O(\sqrt{T})$ regret truthful algorithm
- Forward-looking experts: open problem (truthful algorithm, but no regret guarantee)

• One event: wagering mechs (scoring rule based) FPPV20 \implies truthful \sqrt{T} regret for **myopic agents**

- One event: wagering mechs (scoring rule based) FPPV20 \implies truthful \sqrt{T} regret for **myopic agents**
- Sequence: forecasting competition, ELF (Witkowski et al. 2018) FPPV20 => truthful for **forward-looking**, regret unknown

- One event: wagering mechs (scoring rule based) FPPV20 \implies truthful \sqrt{T} regret for **myopic agents**
- Sequence: forecasting competition, ELF (Witkowski et al. 2018) FPPV20 ⇒ truthful for **forward-looking**, regret unknown

Suggested approach:

- Find a better truthful forecasting competition
- Use it for online learning

- One event: wagering mechs (scoring rule based) FPPV20 \implies truthful \sqrt{T} regret for **myopic agents**
- Sequence: forecasting competition, ELF (Witkowski et al. 2018) FPPV20 ⇒ truthful for **forward-looking**, regret unknown

Suggested approach:

- Find a better truthful forecasting competition
- Use it for online learning

But: we don't know how.

Algorithm:

1 Take multiplicative weights

Algorithm:

1 Take multiplicative weights

2 Run it

Algorithm:

1 Take multiplicative weights

2 Run it

Theorem $\label{eq:main} \mbox{MW achieves } O(\sqrt{T}) \mbox{ strategic regret.}$

Algorithm:

1 Take multiplicative weights

2 Run it

Solution concept? In equilibrium?

Algorithm:

1 Take multiplicative weights

2 Run it

Theorem

MW achieves $O(\sqrt{T})$ strategic regret when experts play undominated strategies.

(more discussion at the end)

(1) MW with $\eta = O(1/\sqrt{T})$ has \sqrt{T} regret to reports.

(1) MW with
$$\eta = O(1/\sqrt{T})$$
 has \sqrt{T} regret to reports.

Definition

A mechanism is γ -approximately truthful if for all undominated strategies r_i , $|r_{it} - p_{it}| \leq \gamma$ for all t.

(1) MW with
$$\eta = O(1/\sqrt{T})$$
 has \sqrt{T} regret to reports.

Definition

A mechanism is γ -approximately truthful if for all undominated strategies r_i , $|r_{it} - p_{it}| \leq \gamma$ for all t.

(2) MW is 4η -approximately truthful.

(1) MW with
$$\eta = O(1/\sqrt{T})$$
 has \sqrt{T} regret to reports.

Definition

A mechanism is γ -approximately truthful if for all undominated strategies r_i , $|r_{it} - p_{it}| \leq \gamma$ for all t.

(2) MW is 4η -approximately truthful.

(1) + (2) \implies MW has \sqrt{T} regret to beliefs.

(1) MW with
$$\eta = O(1/\sqrt{T})$$
 has \sqrt{T} regret to reports.

Definition

A mechanism is γ -approximately truthful if for all undominated strategies r_i , $|r_{it} - p_{it}| \leq \gamma$ for all t.

(2) MW is 4η -approximately truthful.

 $(1) + (2) \implies$ MW has \sqrt{T} regret to beliefs.

(Also enables better forecasting competitions.)

Truthfulness of MW

Truthfulness of MW

Truthfulness of MW

Result: MW is very **robust**.

Is the *result* robust?

Result: MW is very **robust**.

Is the *result* robust?

Not really: need specific conditions on FTRL regularizer. *e.g.* OGD fails

Result: MW is very **robust**.

Is the *result* robust?

Not really: need specific conditions on FTRL regularizer. *e.g.* OGD fails

But: Report Noisy Min is also approximately truthful:

Result: MW is very **robust**.

Is the *result* robust?

Not really: need specific conditions on FTRL regularizer. *e.g.* OGD fails

But: Report Noisy Min is also approximately truthful: 1 Let $Y_i = (\text{total loss of } i) + \text{Laplace}(\gamma)$

Result: MW is very robust.

Is the *result* robust?

Not really: need specific conditions on FTRL regularizer. *e.g. OGD fails*

But: Report Noisy Min is also approximately truthful:

- **1** Let $Y_i = (\text{total loss of } i) + \text{Laplace}(\gamma)$
- **2** Choose $\arg \min_i Y_i$.

Result: MW is very **robust**.

Is the *result* robust?

Not really: need specific conditions on FTRL regularizer. *e.g. OGD fails*

But: Report Noisy Min is also approximately truthful:

1 Let
$$Y_i = (\text{total loss of } i) + \text{Laplace}(\gamma)$$

2 Choose $\arg\min_i Y_i$.

But but: not true for Gaussian noise!

Truthfulness of Report Noisy Min

Truthfulness of Report Noisy Min

Truthfulness of Report Noisy Min

Model of strategic behavior

Our model: immutable beliefs

- Participant has beliefs p_{it} , unchanging
- Strategy is a plan of reports r_{i1}, \ldots, r_{iT}
- Believes rounds are independent, opponents have plans r_{jt}
- Utility is arbitrary positive-weighted sum of $\Pr[\mathsf{chosen}]$

Model of strategic behavior

Our model: immutable beliefs

- Participant has beliefs p_{it} , unchanging
- Strategy is a plan of reports r_{i1}, \ldots, r_{iT}
- Believes rounds are independent, opponents have plans r_{jt}
- Utility is arbitrary positive-weighted sum of $\Pr[\text{chosen}]$

Extensions / questions: Bayesian models, sequential equilibrium, ...

Conjecture

MW achieves strategic regret $O(\sqrt{T})$ in any of the above models.

Conclusion

Setting:

- **1** Online learning from strategic experts
- 2 Experts try to maximize expected # times chosen
- 3 Immutable belief model

Results:

- **1** MW has strategic regret $O(\sqrt{T})$ in undominated strategies.
- 2 exponentially more efficient forecasting competitions (not covered)

Open problems:

- 1 Truthful no-regret algorithm?
- 2 Bayesian settings

Conclusion

Setting:

- **1** Online learning from strategic experts
- 2 Experts try to maximize expected # times chosen
- 3 Immutable belief model

Results:

- **1** MW has strategic regret $O(\sqrt{T})$ in undominated strategies.
- 2 exponentially more efficient forecasting competitions (not covered)

Open problems:

- 1 Truthful no-regret algorithm?
- 2 Bayesian settings

Thanks!