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This talk:

il Motivation: importance of evaluation
2l Research: proper losses for generative models
3l Future: types of tasks
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Q: How good are LLMs?
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Blake Lemoine, the engineer, says that Google’s language model
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Mental model

Microsoft’s Octopoid

Writes Gettysburg Address
the Style of Lil Wayne
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Mental model
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OpenAl Bndge Supports Elephant Herd
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As engineering?

OpenAlI Bridg: *4OpenAl Bridge Collapses.! 4

fter Man Does the Macarenal®
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Problems:
= ML research incentives: new and shiny achievements
= Industry incentives: ...
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Problems:
= ML research incentives: new and shiny achievements
= Industry incentives: ...

Benefits of evaluation research

Rigorous understanding of strengths and weaknesses not hope

... leading to fundamental progress

Improved training methods

Honest public relations No snake oil; no winter
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2. Research
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Proper Losses for Discrete Generative Models, ICML 2023.
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CU Boulder
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Example: forecast a weather system trajectory, or an election
&) & NATIONAL WEATHER SERVICE | Radar

National radar
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Example: forecast a weather system trajectory, or an election

Typical approach:
= model the world
= generate i.i.d. examples from the model
= use these “possible futures” to forecast
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Example: forecast a weather system trajectory, or an election

Typical approach:
= model the world
= generate i.i.d. examples from the model
= use these “possible futures” to forecast

Goal: generative model should match reality as closely as possible.
Similar: GANs
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Traditional proper loss: ¢(prediction, outcome) such that
E, -, ¢(p,y) is minimized by predicting p = ¢. a.k.a. proper scoring rule
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Traditional proper loss: ¢(prediction, outcome) such that
E, -, ¢(p,y) is minimized by predicting p = ¢. a.k.a. proper scoring rule

Key examples:
= Squared loss, {(p,y) = |lp — 6,3 a.k.a Brier score
= Log loss, ¢(p,y) = log(1/py,) a.k.a cross entropy

Lots of research in supervised learning: consistency, calibration, etc
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Problem: generative models are (often) black boxes.
= cannot generally query Dy- or not easy, efficient

—> cannot calculate loss ¢(p, y). Recall: ||p — 6,13, log(1/py).
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Problem: generative models are (often) black boxes.
= cannot generally query Dy- or not easy, efficient

—> cannot calculate loss ¢(p, y). Recall: ||p — 6,13, log(1/py).

Their only interface (suppose): press button, generate example
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Let p be a model and ¢ a ground truth distribution.
We draw samples A ~ p and B ~ gq.

The loss is ((A, B).
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Let p be a model and ¢ a ground truth distribution.
We draw samples A ~ p and B ~ gq.
The loss is ((A, B).

The loss is black-box proper if, for all ¢, E [¢(A, B)] is minimized by
choosing p = q.
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Observation: There is no black-box strictly proper loss.
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Observation: There is no black-box strictly proper loss.

Why: there exists some observation a that minimizes E [((a, B)];
set p = 4.

Solution: draw multiple iid examples from the model p.

(n,m) black box loss:
= Ais n iid draws from p (the model)
= B is m iid draws from ¢ (the world).

14/19



For any n > 2 and any m > 1, there exists an (n,m) black-box strictly
proper loss.
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For any n > 2 and any m > 1, there exists an (n,m) black-box strictly
proper loss.

Furthermore, { is strictly black-box proper <= ¢(p,q) := E[{(A, B)]
is a polynomial in p and q of degree at most n and m resp. such that,
for all q, the minimizer of g is p = q.

Furthermore, we can construct { from g using theory of unbiased
estimators.

15/19



Key example: squared loss.

Naive attempt: ((A, B) = ||p — ¢l empirical distributions
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Key example: squared loss.

Naive attempt: (/(A, B) = ||p — qAH2 empirical distributions
Problem: beneficial to extremize. E[((A, B)] = llp — ql* + 3=, Var(p,)
Fixed: ((A,B) = ||p — q||*> — Zy f(Dy)- f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.
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Problem: in high-dimensional spaces, “signal” is rare
lower bounds for distribution learning

17/19



Problem: in high-dimensional spaces, “signal” is rare
lower bounds for distribution learning

When these losses are practical: on low-dimensional features
= Language: sentence lengths, other statistics

= Images: autoencoder-type features
= Structured output: low-dimensional summaries

Could search for a feature with high loss, a la GANs
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3. Future
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Type 1: forecasting
— proper losses but dimensionality challenges
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Type 1: forecasting
— proper losses but dimensionality challenges

Type 2: creative
— RLHF, etc. seem to be working?

Type 3: problem-solving, question-answering
— issues!

= When can we frame these as forecasting? cf Yogi Berra
= Contrast: game-playing
= Contrast: zero-knowledge proofs

Thanks!
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