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This talk:
1 Motivation: importance of evaluation

2 Research: proper losses for generative models

3 Future: types of tasks
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1. Motivation
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Mental model

Google Unveils Intelligent LLM Octopoid
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Mental model

Microsoft’s Octopoid

Writes Gettysburg Address

in the Style of Lil Wayne

Intelligent Octopoid
Passes Bar Exam

Does Google’s Octopoid
Have a Soul?

Octopoids to Make Schoolteachers Obsolete
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As engineering?
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As engineering?
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As engineering?

OpenAI Bridge Supports Elephant HerdOpenAI Bridge Collapses
After Man Does the Macarena
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An evaluation crisis

Problems:

ML research incentives: new and shiny achievements

Industry incentives: . . .

Benefits of evaluation research

Rigorous understanding of strengths and weaknesses not hope

. . . leading to fundamental progress

Improved training methods

Honest public relations No snake oil; no winter
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2. Research
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Proper losses

Proper Losses for Discrete Generative Models, ICML 2023.

Dhamma Kimpara
CU Boulder

Rafael Frongillo
CU Boulder

Bo Waggoner
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Motivation: forecasting

Example: forecast a weather system trajectory, or an election
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Motivation: forecasting

Example: forecast a weather system trajectory, or an election

Typical approach:

model the world

generate i.i.d. examples from the model

use these “possible futures” to forecast

Goal: generative model should match reality as closely as possible.
Similar: GANs
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Background

Traditional proper loss: `(prediction, outcome) such that
Ey∼q `(p, y) is minimized by predicting p = q. a.k.a. proper scoring rule

Key examples:

Squared loss, `(p, y) = ‖p− δy‖22 a.k.a Brier score

Log loss, `(p, y) = log(1/py) a.k.a cross entropy

Lots of research in supervised learning: consistency, calibration, etc
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Generative models

Problem: generative models are (often) black boxes.

=⇒ cannot generally query py. or not easy, efficient

=⇒ cannot calculate loss `(p, y). Recall: ‖p− δy‖22, log(1/py).

Their only interface (suppose): press button, generate example
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Proposal

Let p be a model and q a ground truth distribution.

We draw samples A ∼ p and B ∼ q.

The loss is `(A,B).

The loss is black-box proper if, for all q, E [`(A,B)] is minimized by
choosing p = q.
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An obstacle

Observation: There is no black-box strictly proper loss.

Why: there exists some observation a that minimizes E [`(a,B)];
set p = δa.

Solution: draw multiple iid examples from the model p.

(n,m) black box loss:

A is n iid draws from p (the model)

B is m iid draws from q (the world).
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Main result

Theorem

For any n ≥ 2 and any m ≥ 1, there exists an (n,m) black-box strictly
proper loss.

Furthermore, ` is strictly black-box proper ⇐⇒ g(p, q) := E[`(A,B)]
is a polynomial in p and q of degree at most n and m resp. such that,
for all q, the minimizer of g is p = q.

Furthermore, we can construct ` from g using theory of unbiased
estimators.
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Example

Key example: squared loss.

Naive attempt: `(A,B) = ‖p̂− q̂‖2 empirical distributions

Problem: beneficial to extremize. E[`(A,B)] = ‖p− q‖2 +
∑

y Var(py)

Fixed: `(A,B) = ‖p̂− q̂‖2 −
∑

y f(p̂y). f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.

16 / 19



Example

Key example: squared loss.

Naive attempt: `(A,B) = ‖p̂− q̂‖2 empirical distributions

Problem: beneficial to extremize. E[`(A,B)] = ‖p− q‖2 +
∑

y Var(py)

Fixed: `(A,B) = ‖p̂− q̂‖2 −
∑

y f(p̂y). f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.

16 / 19



Example

Key example: squared loss.

Naive attempt: `(A,B) = ‖p̂− q̂‖2 empirical distributions

Problem: beneficial to extremize. E[`(A,B)] = ‖p− q‖2 +
∑

y Var(py)

Fixed: `(A,B) = ‖p̂− q̂‖2 −
∑

y f(p̂y). f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.

16 / 19



Example

Key example: squared loss.

Naive attempt: `(A,B) = ‖p̂− q̂‖2 empirical distributions

Problem: beneficial to extremize. E[`(A,B)] = ‖p− q‖2 +
∑

y Var(py)

Fixed: `(A,B) = ‖p̂− q̂‖2 −
∑

y f(p̂y). f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.

16 / 19



Example

Key example: squared loss.

Naive attempt: `(A,B) = ‖p̂− q̂‖2 empirical distributions

Problem: beneficial to extremize. E[`(A,B)] = ‖p− q‖2 +
∑

y Var(py)

Fixed: `(A,B) = ‖p̂− q̂‖2 −
∑

y f(p̂y). f = unbiased estimator for Var

In general: can use theory of unbiased estimators for polynomials.

Bonus: By drawing Poisson, can also implement log loss via Taylor
series.

16 / 19



Practicality

Problem: in high-dimensional spaces, “signal” is rare
lower bounds for distribution learning

When these losses are practical: on low-dimensional features

Language: sentence lengths, other statistics

Images: autoencoder-type features

Structured output: low-dimensional summaries

Could search for a feature with high loss, a la GANs
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3. Future
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Looking forward: types of generative tasks

Type 1: forecasting
→ proper losses but dimensionality challenges

Type 2: creative
→ RLHF, etc. seem to be working?

Type 3: problem-solving, question-answering
→ issues!

When can we frame these as forecasting? cf Yogi Berra

Contrast: game-playing
Contrast: zero-knowledge proofs

Thanks!
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